[Structure de coeur de la dislocation vis de vecteur de Burgers [001] dans l’olivine MgSiO]
Dans cette étude, nous présentons les résultats de calculs atomiques de la structure de coeur de la dislocation vis de vecteur de Burgers [001] dans l’olivine (Mg,Fe)SiO. Nos simulations, reposant sur l’utilisation du potentiel semi-empirique THB1, montrent que la configuration stable de la dislocation vis correspond à une structure de coeur dissociée dans les plans . A basse température, le glissement des dislocations de vecteur de Burgers [001] dans les plans de l’olivine est donc favorisé.
In this study, we report atomistic calculations of the core structure of screw dislocations with [001] Burgers vector in MgSiO olivine. Computations based on the THB1 empirical potential set for olivine show that the stable core configurations of the screw dislocations correspond to a dissociation in planes involving collinear partial dislocations. As a consequence, glide appears to be favorable in planes at low temperature. This study also highlights the difference between dislocation glide mechanism in versus or for which glide is expected to occur through a locking–unlocking mechanism.
Publié le :
Mots-clés : Simulations à l’échelle atomique, Plasticité, Dislocation, Structure de coeur, Glissement, Olivine
Srinivasan Mahendran 1, 2 ; Philippe Carrez 1 ; Patrick Cordier 1, 3
@article{CRPHYS_2021__22_S3_7_0, author = {Srinivasan Mahendran and Philippe Carrez and Patrick Cordier}, title = {The core structure of screw dislocations with [001] {Burgers} vector in {Mg}$_2${SiO}$_4$ olivine}, journal = {Comptes Rendus. Physique}, pages = {7--18}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S3}, year = {2021}, doi = {10.5802/crphys.27}, language = {en}, }
TY - JOUR AU - Srinivasan Mahendran AU - Philippe Carrez AU - Patrick Cordier TI - The core structure of screw dislocations with [001] Burgers vector in Mg$_2$SiO$_4$ olivine JO - Comptes Rendus. Physique PY - 2021 SP - 7 EP - 18 VL - 22 IS - S3 PB - Académie des sciences, Paris DO - 10.5802/crphys.27 LA - en ID - CRPHYS_2021__22_S3_7_0 ER -
%0 Journal Article %A Srinivasan Mahendran %A Philippe Carrez %A Patrick Cordier %T The core structure of screw dislocations with [001] Burgers vector in Mg$_2$SiO$_4$ olivine %J Comptes Rendus. Physique %D 2021 %P 7-18 %V 22 %N S3 %I Académie des sciences, Paris %R 10.5802/crphys.27 %G en %F CRPHYS_2021__22_S3_7_0
Srinivasan Mahendran; Philippe Carrez; Patrick Cordier. The core structure of screw dislocations with [001] Burgers vector in Mg$_2$SiO$_4$ olivine. Comptes Rendus. Physique, Plasticity and Solid State Physics, Volume 22 (2021) no. S3, pp. 7-18. doi : 10.5802/crphys.27. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.27/
[1] The size of a dislocation, Proc. Phys. Soc., Volume 52 (1940), pp. 34-37 | DOI
[2] Theory of Dislocations, Wiley, New York, 1982
[3] Dislocations in a simple cubic lattice, Proc. Phys. Soc., Volume 59 (1947), pp. 256-272 | DOI
[4] Peierls barriers and stresses for edge dislocations in Pd and Al calculated from first principles, Phys. Rev. B, Volume 58 (1998), pp. 2487-2495 | DOI
[5] The core structure of dislocations: Peierls model vs. atomic simulation, Acta Mater., Volume 54 (2006) no. 18, pp. 4865-4870 | DOI
[6] Ab initio modeling of dislocation core properties in metals and semiconductors, Acta Mater., Volume 124 (2017), pp. 633-659 | DOI
[7] Atomistic simulations of dislocation processes in copper, J. Phys. Condens. Matter., Volume 14 (2002) no. 11, pp. 2929-2956 | DOI
[8] Chapter 87 Non-planar dislocation cores: a ubiquitous phenomenon affecting mechanical properties of crystalline materials, Dislocations in Solids (J. Hirth, ed.), Volume 14, Elsevier, Amsterdam, 2008, pp. 440-514
[9] Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 12111 screw dislocations at 0 K, Acta Mater., Volume 56 (2008), pp. 5401-5411 | DOI
[10] First-principles study of secondary slip in zirconium, Phys. Rev. Lett., Volume 112 (2014), 075504, 5 pages | DOI
[11] Accurate atomistic simulations of the Peierls barrier and kink-pair formation energy for 111 screw dislocations in bcc Mo, Comput. Mater. Sci., Volume 9 (1998), pp. 348-356 | DOI
[12] Quantum effect on thermally activated glide of dislocations, Nat. Mater., Volume 11 (2012), pp. 845-849 | DOI
[13] Theoretical study of kinks on screw dislocation in silicon, Phys. Rev. B, Volume 77 (2008), 064106 | DOI
[14] Atomistic examination of the unit processes and vacancy-dislocation interaction in dislocation climb, Scr. Mater., Volume 60 (2009), pp. 399-402 | DOI
[15] Modeling the climb-assisted glide of edge dislocations through a random distribution of nanosized vacancy clusters, Phys. Rev. Mater., Volume 2 (2018), 093604
[16] Atomic-scale properties of jogs along 12110(110) edge dislocations in MgO, Scr. Mater., Volume 181 (2020), pp. 66-69 | DOI
[17] Dislocation core structure in ordered intermetallic alloys, J. Phys. III France, Volume 1 (1991), pp. 997-1014 | DOI
[18] The core structure of an edge dislocation in NaCl, Phys. Status Solidi, Volume 98 (1980), pp. 87-96 | DOI
[19] Atomistic simulation of screw dislocations in rock salt structured materials, Phil. Mag. A, Volume 79 (1999), pp. 527-536 | DOI
[20] Predicting the structure of screw dislocations in nanoporous materials, Nat. Mater., Volume 3 (2004), pp. 715-720 | DOI
[21] Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO minerals, Nature, Volume 446 (2007), pp. 68-70 | DOI
[22] Atomistic study of 110 dislocations in strontium titanate, Acta Mater., Volume 60 (2012), pp. 329-338 | DOI
[23] Peierls potential and kink-pair mechanism in high-pressure MgSiO3 perovskite: An atomic scale study, Phys. Rev. B, Volume 93 (2016), 014103 | DOI
[24] The crystal structures of forsterite and hortonolite at several temperatures up to 900 °C, Am. Mineral., Volume 58 (1973), pp. 588-593
[25] Chapter 95 dislocations in minerals, Dislocations in Solids (J. Hirth, ed.), Volume 16, Elsevier, Amsterdam, 2010, pp. 171-232 | DOI
[26] Mechanisms of plastic deformation of olivine, J. Geophys. Res., Volume 73 (1968), pp. 5391-5406 | DOI
[27] New technique for decorating dislocations in olivine, Science, Volume 191 (1976), pp. 1045-1046 | DOI
[28] Plastic flow of oriented single crystals of olivine: 1. Mechanical data, J. Geophys. Res., Volume 82 (1977), pp. 5737-5753 | DOI
[29] High-temperature creep of forsterite single crystals, J. Geophys. Res., Volume 86 (1981), pp. 6129-6234 | DOI
[30] Dislocations in naturally deformed terrestrial olivine: classification, interpretation, applications, Bull. Mineral., Volume 102 (1979), pp. 178-183
[31] High temperature flow of dunite and peridotite, Geol. Soc. Am. Bull., Volume 81 (1970), pp. 2181-2202 | DOI
[32] Transmission electron microscopy of experimentally deformed olivine crystals, Flow and Fracture of Rocks, American Geophysical Union (AGU), Washington, DC, 1972, pp. 117-138
[33] The temperature variation of hardness of olivine and its implication for polycrystalline yield stress, J. Geophys. Res., Volume 84 (1979), pp. 5505-5524 | DOI
[34] The role of water in the deformation of olivine single crystals, J. Geophys. Res., Volume 90 (1985), 11319
[35] Low-temperature plasticity of olivine revisited with in situ TEM nanomechanical testing, Sci. Adv., Volume 2 (2016), e1501671 | DOI
[36] Dislocations in olivine indented at low temperatures, Phys. Chem. Miner., Volume 7 (1981), pp. 100-104 | DOI
[37] Characterization of the glide planes of the [001] screw dislocations in olivine using electron tomography, Phys. Chem. Miner., Volume 41 (2014), pp. 537-545 | DOI
[38] Influence of crystal chemistry on ideal plastic shear anisotropy in forsterite: First principle calculations, Am. Miner., Volume 90 (2005), pp. 1072-1077 | DOI
[39] Pressure sensitivity of olivine slip systems: First-principle calculations of generalised stacking faults, Phys. Chem. Miner., Volume 32 (2005), pp. 646-654 | DOI
[40] Application of the Peierls–Nabarro model to dislocations in forsterite, Eur. J. Mineral., Volume 19 (2007), pp. 631-639 | DOI
[41] Intrinsic stacking faults in body-centred cubic crystals, Phil. Mag., Volume 18 (1968), pp. 773-786 | DOI
[42] The Peierls model: Progress and limitations, Mater. Sci. Eng. A, Volume 400–401 (2005), pp. 7-17 | DOI
[43] Atomic scale modelling of the cores of dislocations in complex materials part 1: methodology, Phys. Chem. Chem. Phys., Volume 7 (2005), pp. 3227-3234 | DOI
[44] Atomic scale modelling of the cores of dislocations in complex materials part 2: applications, Phys. Chem. Chem. Phys., Volume 7 (2005), pp. 3235-3242 | DOI
[45] Evidence from numerical modelling for 3D spreading of [001] screw dislocations in Mg2SiO4 forsterite, Phil. Mag., Volume 88 (2008), pp. 2477-2485 | DOI
[46] Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., Volume 117 (1995), pp. 1-19 | DOI | Zbl
[47] Dislocation modelling in Mg2SiO4 forsterite: an atomic-scale study based on the THB1 potential, Modell. Simul. Mater. Sci. Eng., Volume 25 (2017), 054002 | DOI
[48] On the glide of [100] dislocation and the origin of ‘pencil glide’ in MgSiO olivine, Phil. Mag., Volume 99 (2019), pp. 2751-2769 | DOI
[49] Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth’s upper mantle, Nature, Volume 433 (2005), pp. 731-733 | DOI
[50] Computer simulations of the structural and physical properties of the olivine and spinel polymorphs of Mg2SiO4, Phys. Chem. Miner., Volume 10 (1984), pp. 209-216 | DOI
[51] The lattice dynamics of forsterite, Min. Mag., Volume 51 (1987) no. 359, pp. 157-170 | DOI
[52] Atomic-scale models of dislocation cores in minerals: progress and prospects, Min. Mag., Volume 74 (2010), pp. 381-413 | DOI
[53] Effects of dislocation interactions: Application to the period-doubled core of the 90° partial in silicon, Phys. Rev. Lett., Volume 80 (1998), pp. 5568-5571 | DOI
[54] Periodic image effects in dislocation modelling, Phil. Mag., Volume 83 (2003), pp. 539-567 | DOI
[55] Atomsk: A tool for manipulating and converting atomic data files, Comput. Phys. Commun., Volume 197 (2015), pp. 212-219 | DOI
[56] Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r summation, J. Chem. Phys., Volume 110 (1999) no. 17, pp. 8254-8282 | DOI
[57] Atomic core structure and mobility of [100](010 and [010](100) dislocations in MgSiO3 perovskite, Acta Mater., Volume 79 (2014), pp. 117-125 | DOI
[58] Ab initio study of screw dislocations in Mo and Ta: A new picture of plasticity in bcc transition metals, Phys. Rev. Lett., Volume 84 (2000), pp. 1499-1502 | DOI
[59] Thermally Activated Mechanisms in Crystal Plasticity, Pergamon Materials Series, 8, Elsevier, Oxford, 2003
[60] Dislocations, Mesoscale Simulations and Plastic Flow, Oxford Series on Materials Modelling, Oxford University Press, 2013 | DOI
[61] Multiscale modelling of MgO plasticity, Acta Mater., Volume 59 (2011), pp. 2291-2301 | DOI
Cité par Sources :
Commentaires - Politique