[Structure de coeur de la dislocation vis de vecteur de Burgers [001] dans l’olivine Mg
Dans cette étude, nous présentons les résultats de calculs atomiques de la structure de coeur de la dislocation vis de vecteur de Burgers [001] dans l’olivine (Mg,Fe)
In this study, we report atomistic calculations of the core structure of screw dislocations with [001] Burgers vector in Mg
Publié le :
Mots-clés : Simulations à l’échelle atomique, Plasticité, Dislocation, Structure de coeur, Glissement, Olivine
Srinivasan Mahendran 1, 2 ; Philippe Carrez 1 ; Patrick Cordier 1, 3

@article{CRPHYS_2021__22_S3_7_0, author = {Srinivasan Mahendran and Philippe Carrez and Patrick Cordier}, title = {The core structure of screw dislocations with [001] {Burgers} vector in {Mg}$_2${SiO}$_4$ olivine}, journal = {Comptes Rendus. Physique}, pages = {7--18}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S3}, year = {2021}, doi = {10.5802/crphys.27}, language = {en}, }
TY - JOUR AU - Srinivasan Mahendran AU - Philippe Carrez AU - Patrick Cordier TI - The core structure of screw dislocations with [001] Burgers vector in Mg$_2$SiO$_4$ olivine JO - Comptes Rendus. Physique PY - 2021 SP - 7 EP - 18 VL - 22 IS - S3 PB - Académie des sciences, Paris DO - 10.5802/crphys.27 LA - en ID - CRPHYS_2021__22_S3_7_0 ER -
%0 Journal Article %A Srinivasan Mahendran %A Philippe Carrez %A Patrick Cordier %T The core structure of screw dislocations with [001] Burgers vector in Mg$_2$SiO$_4$ olivine %J Comptes Rendus. Physique %D 2021 %P 7-18 %V 22 %N S3 %I Académie des sciences, Paris %R 10.5802/crphys.27 %G en %F CRPHYS_2021__22_S3_7_0
Srinivasan Mahendran; Philippe Carrez; Patrick Cordier. The core structure of screw dislocations with [001] Burgers vector in Mg$_2$SiO$_4$ olivine. Comptes Rendus. Physique, Plasticity and Solid State Physics, Volume 22 (2021) no. S3, pp. 7-18. doi : 10.5802/crphys.27. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.27/
[1] The size of a dislocation, Proc. Phys. Soc., Volume 52 (1940), pp. 34-37 | DOI
[2] Theory of Dislocations, Wiley, New York, 1982
[3] Dislocations in a simple cubic lattice, Proc. Phys. Soc., Volume 59 (1947), pp. 256-272 | DOI
[4] Peierls barriers and stresses for edge dislocations in Pd and Al calculated from first principles, Phys. Rev. B, Volume 58 (1998), pp. 2487-2495 | DOI
[5] The core structure of dislocations: Peierls model vs. atomic simulation, Acta Mater., Volume 54 (2006) no. 18, pp. 4865-4870 | DOI
[6] Ab initio modeling of dislocation core properties in metals and semiconductors, Acta Mater., Volume 124 (2017), pp. 633-659 | DOI
[7] Atomistic simulations of dislocation processes in copper, J. Phys. Condens. Matter., Volume 14 (2002) no. 11, pp. 2929-2956 | DOI
[8] Chapter 87 Non-planar dislocation cores: a ubiquitous phenomenon affecting mechanical properties of crystalline materials, Dislocations in Solids (J. Hirth, ed.), Volume 14, Elsevier, Amsterdam, 2008, pp. 440-514
[9] Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1
[10] First-principles study of secondary slip in zirconium, Phys. Rev. Lett., Volume 112 (2014), 075504, 5 pages | DOI
[11] Accurate atomistic simulations of the Peierls barrier and kink-pair formation energy for
[12] Quantum effect on thermally activated glide of dislocations, Nat. Mater., Volume 11 (2012), pp. 845-849 | DOI
[13] Theoretical study of kinks on screw dislocation in silicon, Phys. Rev. B, Volume 77 (2008), 064106 | DOI
[14] Atomistic examination of the unit processes and vacancy-dislocation interaction in dislocation climb, Scr. Mater., Volume 60 (2009), pp. 399-402 | DOI
[15] Modeling the climb-assisted glide of edge dislocations through a random distribution of nanosized vacancy clusters, Phys. Rev. Mater., Volume 2 (2018), 093604
[16] Atomic-scale properties of jogs along 1
[17] Dislocation core structure in ordered intermetallic alloys, J. Phys. III France, Volume 1 (1991), pp. 997-1014 | DOI
[18] The core structure of an edge dislocation in NaCl, Phys. Status Solidi, Volume 98 (1980), pp. 87-96 | DOI
[19] Atomistic simulation of screw dislocations in rock salt structured materials, Phil. Mag. A, Volume 79 (1999), pp. 527-536 | DOI
[20] Predicting the structure of screw dislocations in nanoporous materials, Nat. Mater., Volume 3 (2004), pp. 715-720 | DOI
[21] Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO
[22] Atomistic study of
[23] Peierls potential and kink-pair mechanism in high-pressure MgSiO3 perovskite: An atomic scale study, Phys. Rev. B, Volume 93 (2016), 014103 | DOI
[24] The crystal structures of forsterite and hortonolite at several temperatures up to 900 °C, Am. Mineral., Volume 58 (1973), pp. 588-593
[25] Chapter 95 dislocations in minerals, Dislocations in Solids (J. Hirth, ed.), Volume 16, Elsevier, Amsterdam, 2010, pp. 171-232 | DOI
[26] Mechanisms of plastic deformation of olivine, J. Geophys. Res., Volume 73 (1968), pp. 5391-5406 | DOI
[27] New technique for decorating dislocations in olivine, Science, Volume 191 (1976), pp. 1045-1046 | DOI
[28] Plastic flow of oriented single crystals of olivine: 1. Mechanical data, J. Geophys. Res., Volume 82 (1977), pp. 5737-5753 | DOI
[29] High-temperature creep of forsterite single crystals, J. Geophys. Res., Volume 86 (1981), pp. 6129-6234 | DOI
[30] Dislocations in naturally deformed terrestrial olivine: classification, interpretation, applications, Bull. Mineral., Volume 102 (1979), pp. 178-183
[31] High temperature flow of dunite and peridotite, Geol. Soc. Am. Bull., Volume 81 (1970), pp. 2181-2202 | DOI
[32] Transmission electron microscopy of experimentally deformed olivine crystals, Flow and Fracture of Rocks, American Geophysical Union (AGU), Washington, DC, 1972, pp. 117-138
[33] The temperature variation of hardness of olivine and its implication for polycrystalline yield stress, J. Geophys. Res., Volume 84 (1979), pp. 5505-5524 | DOI
[34] The role of water in the deformation of olivine single crystals, J. Geophys. Res., Volume 90 (1985), 11319
[35] Low-temperature plasticity of olivine revisited with in situ TEM nanomechanical testing, Sci. Adv., Volume 2 (2016), e1501671 | DOI
[36] Dislocations in olivine indented at low temperatures, Phys. Chem. Miner., Volume 7 (1981), pp. 100-104 | DOI
[37] Characterization of the glide planes of the [001] screw dislocations in olivine using electron tomography, Phys. Chem. Miner., Volume 41 (2014), pp. 537-545 | DOI
[38] Influence of crystal chemistry on ideal plastic shear anisotropy in forsterite: First principle calculations, Am. Miner., Volume 90 (2005), pp. 1072-1077 | DOI
[39] Pressure sensitivity of olivine slip systems: First-principle calculations of generalised stacking faults, Phys. Chem. Miner., Volume 32 (2005), pp. 646-654 | DOI
[40] Application of the Peierls–Nabarro model to dislocations in forsterite, Eur. J. Mineral., Volume 19 (2007), pp. 631-639 | DOI
[41] Intrinsic stacking faults in body-centred cubic crystals, Phil. Mag., Volume 18 (1968), pp. 773-786 | DOI
[42] The Peierls model: Progress and limitations, Mater. Sci. Eng. A, Volume 400–401 (2005), pp. 7-17 | DOI
[43] Atomic scale modelling of the cores of dislocations in complex materials part 1: methodology, Phys. Chem. Chem. Phys., Volume 7 (2005), pp. 3227-3234 | DOI
[44] Atomic scale modelling of the cores of dislocations in complex materials part 2: applications, Phys. Chem. Chem. Phys., Volume 7 (2005), pp. 3235-3242 | DOI
[45] Evidence from numerical modelling for 3D spreading of [001] screw dislocations in Mg2SiO4 forsterite, Phil. Mag., Volume 88 (2008), pp. 2477-2485 | DOI
[46] Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., Volume 117 (1995), pp. 1-19 | DOI | Zbl
[47] Dislocation modelling in Mg2SiO4 forsterite: an atomic-scale study based on the THB1 potential, Modell. Simul. Mater. Sci. Eng., Volume 25 (2017), 054002 | DOI
[48] On the glide of [100] dislocation and the origin of ‘pencil glide’ in Mg
[49] Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth’s upper mantle, Nature, Volume 433 (2005), pp. 731-733 | DOI
[50] Computer simulations of the structural and physical properties of the olivine and spinel polymorphs of Mg2SiO4, Phys. Chem. Miner., Volume 10 (1984), pp. 209-216 | DOI
[51] The lattice dynamics of forsterite, Min. Mag., Volume 51 (1987) no. 359, pp. 157-170 | DOI
[52] Atomic-scale models of dislocation cores in minerals: progress and prospects, Min. Mag., Volume 74 (2010), pp. 381-413 | DOI
[53] Effects of dislocation interactions: Application to the period-doubled core of the 90° partial in silicon, Phys. Rev. Lett., Volume 80 (1998), pp. 5568-5571 | DOI
[54] Periodic image effects in dislocation modelling, Phil. Mag., Volume 83 (2003), pp. 539-567 | DOI
[55] Atomsk: A tool for manipulating and converting atomic data files, Comput. Phys. Commun., Volume 197 (2015), pp. 212-219 | DOI
[56] Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r
[57] Atomic core structure and mobility of [100](010 and [010](100) dislocations in MgSiO3 perovskite, Acta Mater., Volume 79 (2014), pp. 117-125 | DOI
[58] Ab initio study of screw dislocations in Mo and Ta: A new picture of plasticity in bcc transition metals, Phys. Rev. Lett., Volume 84 (2000), pp. 1499-1502 | DOI
[59] Thermally Activated Mechanisms in Crystal Plasticity, Pergamon Materials Series, 8, Elsevier, Oxford, 2003
[60] Dislocations, Mesoscale Simulations and Plastic Flow, Oxford Series on Materials Modelling, Oxford University Press, 2013 | DOI
[61] Multiscale modelling of MgO plasticity, Acta Mater., Volume 59 (2011), pp. 2291-2301 | DOI
- Earth's Mantle Rheology, Structure and Dynamics of the Earth's Interior 2 (2025), p. 221 | DOI:10.1002/9781394361779.ch7
- Structures and energies of twist grain boundaries in Mg2SiO4 forsterite, Computational Materials Science, Volume 233 (2024), p. 112768 | DOI:10.1016/j.commatsci.2023.112768
- Topological spin texture in the pseudogap phase of a high-Tc superconductor, Nature, Volume 615 (2023) no. 7952, p. 405 | DOI:10.1038/s41586-023-05731-3
- Foreword: Plasticity and Solid State Physics, Comptes Rendus. Physique, Volume 22 (2021) no. S3, p. 3 | DOI:10.5802/crphys.92
Cité par 4 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier