We show here how density functional theory calculations can be used to predict the temperature- and orientation-dependence of the yield stress of body-centered cubic (BCC) metals in the thermally-activated regime where plasticity is governed by the glide of screw dislocations with a
Publié le :
Emmanuel Clouet 1 ; Baptiste Bienvenu 1 ; Lucile Dezerald 2 ; David Rodney 3

@article{CRPHYS_2021__22_S3_83_0, author = {Emmanuel Clouet and Baptiste Bienvenu and Lucile Dezerald and David Rodney}, title = {Screw dislocations in {BCC} transition metals: from \protect\emph{ab initio} modeling to yield criterion}, journal = {Comptes Rendus. Physique}, pages = {83--116}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S3}, year = {2021}, doi = {10.5802/crphys.75}, language = {en}, }
TY - JOUR AU - Emmanuel Clouet AU - Baptiste Bienvenu AU - Lucile Dezerald AU - David Rodney TI - Screw dislocations in BCC transition metals: from ab initio modeling to yield criterion JO - Comptes Rendus. Physique PY - 2021 SP - 83 EP - 116 VL - 22 IS - S3 PB - Académie des sciences, Paris DO - 10.5802/crphys.75 LA - en ID - CRPHYS_2021__22_S3_83_0 ER -
%0 Journal Article %A Emmanuel Clouet %A Baptiste Bienvenu %A Lucile Dezerald %A David Rodney %T Screw dislocations in BCC transition metals: from ab initio modeling to yield criterion %J Comptes Rendus. Physique %D 2021 %P 83-116 %V 22 %N S3 %I Académie des sciences, Paris %R 10.5802/crphys.75 %G en %F CRPHYS_2021__22_S3_83_0
Emmanuel Clouet; Baptiste Bienvenu; Lucile Dezerald; David Rodney. Screw dislocations in BCC transition metals: from ab initio modeling to yield criterion. Comptes Rendus. Physique, Plasticity and Solid State Physics, Volume 22 (2021) no. S3, pp. 83-116. doi : 10.5802/crphys.75. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.75/
[1] Materials: Engineering, Science, Processing and Design, Butterworth–Heinemann, Oxford, UK, 2018
[2] et al. Recent progress in research on tungsten materials for nuclear fusion applications in Europe, J. Nucl. Mater., Volume 432 (2013), pp. 482-500 | DOI
[3] Proceedings of the Fifth International Conference on Crystallography (1960)
[4] Some surprising features of the plastic deformation of body-centered cubic metals and alloys, Metall. Trans. A, Volume 14 (1983), pp. 1237-1256 | DOI
[5] The core structure of 1/2(111) screw dislocations in BCC crystals, Philos. Mag. A, Volume 21 (1970), pp. 1049-1073 | DOI
[6] In situ deformation of BCC crystals at low temperatures in a high-voltage electron microscope Dislocation mechanisms and strain-rate equation, Philos. Mag. A, Volume 39 (1979) no. 4, pp. 433-454 | DOI
[7] Kinetics of dislocations in pure Fe. Part II. In situ straining experiments at low temperature, Acta Mater., Volume 58 (2010), pp. 3504-3515 | DOI
[8] Plastic deformation of tungsten single crystals at low temperatures, Acta Metall., Volume 14 (1966), pp. 1449-1462 | DOI
[9] The effect of orientation and temperature on the plastic flow properties of iron single crystals, Acta Metall., Volume 18 (1970), pp. 611-622 | DOI
[10] Geometry and kinetics of glide of screw dislocations in tungsten between 95 K and 573 K, Acta Mater., Volume 161 (2018), pp. 21-34 | DOI
[11] Thermally Activated Mechanisms in Crystal Plasticity, Pergamon, Amsterdam, Netherlands, 2003
[12] Explanation of the discrepancy between the measured and atomistically calculated yield stresses in body-centred cubic metals, Philos. Mag. Lett., Volume 87 (2007), pp. 113-120 | DOI
[13] Quantum effect on thermally activated glide of dislocations, Nat. Mater., Volume 11 (2012), pp. 845-849 | DOI
[14] Quantum effects on dislocation motion from ring-polymer molecular dynamics, NPJ Comput. Mater., Volume 4 (2018), pp. 1-6 | DOI
[15] Proceedings of the First International Congress of Applied Mechanics, Delft (1924), pp. 342-353
[16] Plastic anisotropy in BCC transition metals, Acta Mater., Volume 46 (1998), pp. 1481-1492 | DOI
[17] Ab initio study of screw dislocations in Mo and Ta: a new picture of plasticity in BCC transition metals, Phys. Rev. Lett., Volume 84 (2000), pp. 1499-1502 | DOI
[18] Flexible ab initio boundary conditions: simulating isolated dislocations in BCC Mo and Ta, Phys. Rev. Lett., Volume 88 (2002), 216402 | DOI
[19] Density functional theory studies of screw dislocation core structures in BCC metals, Philos. Mag., Volume 83 (2003) no. 3, pp. 365-375 | DOI
[20] Core structure and Peierls potential of screw dislocations in
[21] Plastic anisotropy and dislocation trajectory in BCC metals, Nat. Commun., Volume 7 (2016), 11695 | DOI
[22] Non-glide effects and dislocation core fields in BCC metals, NPJ Comput. Mater., Volume 5 (2019), 109 | DOI
[23] Simulation of screw dislocation motion in iron by molecular dynamics simulations, Phys. Rev. Lett., Volume 95 (2005), 215506 | DOI
[24] The glide of screw dislocations in BCC Fe: atomistic static and dynamic simulations, Acta Mater., Volume 54 (2006), pp. 3407-3416 | DOI
[25] Stress and temperature dependence of screw dislocation mobility in
[26] A phenomenological dislocation mobility law for BCC metals, Acta Mater., Volume 119 (2016), pp. 123-135 | DOI
[27] First-principles study on the mobility of screw dislocations in BCC iron, Acta Mater., Volume 60 (2012), pp. 3698-3710 | DOI
[28] Prediction of the kink-pair formation enthalpy on screw dislocations in
[29] First-principles prediction of kink-pair activation enthalpy on screw dislocations in BCC transition metals: V, Nb, Ta, Mo, W, and Fe, Phys. Rev. B, Volume 91 (2015), 094105. | DOI
[30] Coupling 2D atomistic information to 3D kink-pair enthalpy models of screw dislocations in BCC metals, Phys. Rev. Mater., Volume 3 (2019), 103603
[31] Dislocation dynamics simulations of plasticity in Fe laths at low temperature, Acta Mater., Volume 56 (2008), pp. 5466-5476 | DOI
[32] Multiscale modeling of plastic deformation of molybdenum and tungsten: II. Yield criterion for single crystals based on atomistic studies of glide of 1
[33] Inhomogeneous electron gas, Phys. Rev., Volume 136 (1964), p. B864-B871 | DOI | MR
[34] Self-consistent equations including exchange and correlations effects, Phys. Rev., Volume 140 (1965), p. A1133-A1138 | DOI | MR
[35] First-principles simulations of dislocation cores, Mater. Sci. Eng. A, Volume 400–401 (2005), pp. 59-67 | DOI
[36] Ab initio modeling of dislocation core properties in metals and semiconductors, Acta Mater., Volume 124 (2017), pp. 633-659 | DOI
[37] Ab initio models of dislocations, Handbook of Materials Modeling (W. Andreoni; S. Yip, eds.), Springer International Publishing, New York, USA, 2018, pp. 1-22
[38] Flexible boundary conditions and nonlinear geometric effects in atomic dislocation modeling, J. Appl. Phys., Volume 49 (1978), pp. 3890-3897 | DOI
[39] Dislocation core energies and core fields from first principles, Phys. Rev. Lett., Volume 102 (2009) no. 5, 055502 | DOI
[40] Periodic image effects in dislocation modelling, Philos. Mag., Volume 83 (2003), pp. 539-567 | DOI
[41] Elasticity effects in electronic structure calculations with periodic boundary conditions, Comput. Mater. Sci., Volume 38 (2006), pp. 293-297 | DOI
[42] First-principles study of secondary slip in zirconium, Phys. Rev. Lett., Volume 112 (2014), 075504 | DOI
[43] Ab initio modeling of the two-dimensional energy landscape of screw dislocations in BCC transition metals, Phys. Rev. B, Volume 89 (2014), 024104 | DOI
[44] Motion of a screw dislocation in a two-dimensional Peierls potential, Phys. Rev. B, Volume 55 (1997) no. 10, pp. 6180-6187 | DOI
[45] Plastic anisotropy in BCC transition metals, Mater. Sci. Eng. A, Volume 234 (1997), pp. 1103-1105 | DOI
[46] Peierls potential of screw dislocations in BCC transition metals: Predictions from density functional theory, Phys. Rev. B, Volume 87 (2013), 054114
[47] Core structure of a screw dislocation in the BCC lattice and its relation to slip behaviour of
[48] Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys., Volume 113 (2000), pp. 9978-9985 | DOI
[49] Effect of zero-point motion on Peierls stress, Fundamental Aspects of Dislocation Theory (J. A. Simmons; R. de Wit; R. Bullough, eds.), Volume 317, National Bureau of Standards, Washington DC, USA, 1970
[50] Influence of shear stress on screw dislocations in a model sodium lattice, Can. J. Phys., Volume 49 (1971), pp. 2160-2180 | DOI
[51] Ab-initio simulation of isolated screw dislocations in BCC Mo and Ta, Philos. Mag. A, Volume 81 (2001), pp. 1305-1316 | DOI
[52] Effect of Rhenium on the dislocation core structure in Tungsten, Phys. Rev. Lett., Volume 104 (2010), 195503 | DOI
[53] Ab initio investigation of the Peierls potential of screw dislocations in BCC Fe and W, Acta Mater., Volume 61 (2013), pp. 3973-3985 | DOI
[54] Nodal effects in dislocation mobility, Phys. Rev. Lett., Volume 89 (2002), 115501
[55] Quantum Peierls stress of straight and kinked dislocations and effect of non-glide stresses, Modell. Simul. Mater. Sci. Eng., Volume 22 (2014), 025006 | DOI
[56] Stress-dependent Peierls potential: influence on Kink–Pair activation, Phys. Rev. B, Volume 79 (2009), 094108 | DOI
[57] Yielding and plastic flow in single crystals of tungsten, Trans. Met. Soc. AIME, Volume 224 (1962), pp. 981-989
[58] Deformation and fracture of tungsten single crystals, J. Less Common Met., Volume 9 (1965), pp. 168-180 | DOI
[59] Nouvelle méthode de précision pour la mesure de la maille individuelle des grains. Application à l’étude de l’écrouissage et de la recristallisation, Rev. Met. Paris, Volume 46 (1949), pp. 354-359 | DOI
[60] A new representation of the strain field associated with the cube-edge dislocation in a model of a
[61] Anisotropic elastic solutions for line defects in high-symmetry cases, J. Appl. Phys., Volume 44 (1973), pp. 1029-1032 | DOI
[62] Dislocation core field. I. Modeling in anisotropic linear elasticity theory, Phys. Rev. B, Volume 84 (2011), 224111 | DOI
[63] Dislocation core field. II. Screw dislocation in iron, Phys. Rev. B, Volume 84 (2011), 224107 | DOI
[64] The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. A, Volume 241 (1957), pp. 376-396 | MR | Zbl
[65] The elastic field outside an ellipsoidal inclusion, Proc. R. Soc. Lond. A, Volume 252 (1959), pp. 561-569 | MR | Zbl
[66] Elastic modeling of point-defects and their interaction, Comput. Mater. Sci., Volume 147 (2018), pp. 49-63 | DOI
[67] Influence of non-glide stresses on plastic flow: from atomistic to continuum modeling, Mater. Sci. Eng. A, Volume 365 (2004), pp. 31-37 | DOI
[68] Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1
[69] Atomistic aspects of
[70] Which stresses affect the glide of screw dislocations in BCC metals?, Philos. Mag., Volume 94 (2014), pp. 1-10 | DOI
[71] Insights on activation enthalpy for non-Schmid slip in body-centered cubic metals, Scr. Mater., Volume 99 (2015), pp. 89-92 | DOI
[72] On non-glide stresses and their influence on the screw dislocation core in body-centred cubic metals I. The Peierls stress, Proc. R. Soc. Lond. A, Volume 392 (1984) no. 1802, pp. 145-173
[73] Plastic deformation of tantalum single crystals: I. The surface morphology of yield, J. Less Common Met., Volume 13 (1967) no. 1, pp. 71-84 | DOI
[74] The plastic deformation behavior of Mo single crystals under compression, Phys. Status Solidi A, Volume 11 (1972) no. 2, pp. 645-651 | DOI
[75] Orientation dependence of slip in tantalum single crystals, Acta Metall., Volume 20 (1972) no. 7, pp. 909-915 | DOI
[76] Slip geometry of tantalum and tantalum alloys, Phys. Status Solidi A, Volume 32 (1975) no. 2, pp. 449-458 | DOI
[77] Progress in materials science, Thermodynamics and Kinetics of Slip, Volume 19, Pergamon Press, Oxford, UK, 1975
[78] Introduction to Solid State Physics, Wiley, New York, USA, 1966
[79] Unsupervised calculation of free energy barriers in large crystalline systems, Phys. Rev. Lett., Volume 120 (2018), 135503
[80] Relation between the energy constant and the quantity constant in the conductivity–temperature formula of oxide semiconductors, Z. Tech. Phys., Volume 18 (1937), pp. 588-593
[81] Modeling the thermally activated mobility of dislocations at the atomic scale, Handbook of Materials Modeling (W. Andreoni; S. Yip, eds.), Springer International Publishing, New York, USA, 2020, pp. 1525-1544 | DOI
[82] Free Energy Generalization of the Peierls Potential in Iron, Phys. Rev. Lett., Volume 111 (2013), 095502
[83] Anharmonic effect on the thermally activated migration of
[84] Motion of a screw dislocation in a two-dimensional Peierls potential, Phys. Rev. B, Volume 55 (1997) no. 10, pp. 6180-6187 | DOI
[85] The plastic properties of high-purity W single crystals, Mater. Lett., Volume 42 (2000), pp. 290-296 | DOI
[86] Temperature dependence of the plastic flow of high-purity tungsten single crystals, Int. J. Mater. Res., Volume 101 (2010) no. 8, pp. 1003-1013 | DOI
[87] Thermally-activated non-Schmid glide of screw dislocations in W using atomistically-informed kinetic Monte Carlo simulations, Int. J. Plast., Volume 65 (2015), pp. 108-130 | DOI
[88] Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations, Int. J. Plast., Volume 78 (2016), pp. 242-265 | DOI
[89] Repulsion leads to coupled dislocation motion and extended work hardening in BCC metals, Nat. Commun., Volume 11 (2020), 5098 | DOI
[90] Development of new interatomic potentials appropriate for crystalline and liquid iron, Philos. Mag., Volume 83 (2003), pp. 3977-3994 | DOI
[91] Interatomic potentials for modelling radiation defects and dislocations in tungsten, J. Phys.: Condens. Matter, Volume 25 (2013), 395502
[92] Magnetic bond-order potential for iron, Phys. Rev. Lett., Volume 106 (2011), 246402 | DOI
[93] Screw dislocation structure and mobility in body centered cubic Fe predicted by a Gaussian Approximation Potential, NPJ Comput. Mater., Volume 4 (2018), 69 | DOI
[94] Neural network atomic potential to investigate the dislocation dynamics in BCC iron, Phys. Rev. Mater., Volume 4 (2020), 040601(R)
[95] Screw dislocation core structure in the paramagnetic state of BCC iron from first-principles calculations, Phys. Rev. B, Volume 102 (2020), 094420 | DOI
[96] Impact of magnetism on screw dislocations in body-centered cubic chromium, Acta Mater., Volume 200 (2020), pp. 570-580 | DOI
[97] The chemistry of deformation: how solutes soften pure metals, Science, Volume 310 (2005), pp. 1665-1667 | DOI
[98] The effect of hydrogen atoms on the screw dislocation mobility in BCC iron: A first-principles study, Acta Mater., Volume 61 (2013), pp. 6857-6867 | DOI
[99] Anomalous solution softening by unique energy balance mediated by kink mechanism in tungsten-rhenium alloys, J. Appl. Phys., Volume 127 (2020), 025101 | DOI
[100] Ab initio modeling of the energy landscape for screw dislocations in body-centered cubic high-entropy alloys, NPJ Comput. Mater., Volume 6 (2020), 110
[101] Dislocation-core symmetry and slip planes in tungsten alloys: Ab initio calculations and microcantilever bending experiments, Acta Mater., Volume 60 (2012), pp. 748-758 | DOI
[102] Core polarity of screw dislocations in Fe–Co alloys, Philos. Mag. Lett., Volume 94 (2014), pp. 334-341 | DOI
[103] The influence of transition metal solutes on the dislocation core structure and values of the Peierls stress and barrier in tungsten, J. Phys.: Condens. Matter, Volume 25 (2013), 025403
[104] Hybrid quantum/classical study of hydrogen-decorated screw dislocations in tungsten: Ultrafast pipe diffusion, core reconstruction, and effects on glide mechanism, Phys. Rev. Mater., Volume 4 (2020), 023601
[105] Dislocation core reconstruction induced by carbon segregation in BCC iron, Phys. Rev. B, Volume 91 (2015), 220102 | DOI
[106] First principles investigation of carbon-screw dislocation interactions in body-centered cubic metals, Modell. Simul. Mater. Sci. Eng., Volume 25 (2017), 084001 | DOI
[107] Attractive interaction between interstitial solutes and screw dislocations in BCC iron from first principles, Comput. Mater. Sci., Volume 148 (2018), pp. 21-26 | DOI
[108] Ab initio thermodynamics of carbon segregation on dislocation cores in BCC iron, Modell. Simul. Mater. Sci. Eng., Volume 27 (2019), 074002 | DOI
[109] Interaction of carbon with microstructural defects in a W-Re matrix: An ab initio assessment, J. Appl. Phys., Volume 126 (2019), 075110 | DOI
[110] Screw dislocation-carbon interaction in BCC tungsten: an ab initio study, Acta Mater., Volume 200 (2020), pp. 481-489 | DOI
[111] Simulating the mechanisms of serrated flow in interstitial alloys with atomic resolution over diffusive timescales, Nat. Commun., Volume 11 (2020), 1227
[112] Dynamic strain aging caused by a new Peierls mechanism at high-temperature in iron, Scr. Mater., Volume 95 (2015), pp. 15-18 | DOI
[113] Dynamic strain ageing in iron alloys: the shielding effect of carbon, Acta Mater., Volume 112 (2016), pp. 273-284 | DOI
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier