Comptes Rendus
From everyday glass to disordered solids: Foreword
[Du verre quotidien aux solides désordonnés : Avant-propos]
Comptes Rendus. Physique, Volume 24 (2023) no. S1, pp. 5-8.
Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crphys.165
Jean-Louis Barrat 1 ; Daniel R. Neuville 2

1 Université Grenoble-Alpes, Grenoble, France
2 Université de Paris, Institut de physique du globe de Paris, CNRS, Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2023__24_S1_5_0,
     author = {Jean-Louis Barrat and Daniel R. Neuville},
     title = {From everyday glass to disordered solids: {Foreword}},
     journal = {Comptes Rendus. Physique},
     pages = {5--8},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {24},
     number = {S1},
     year = {2023},
     doi = {10.5802/crphys.165},
     language = {en},
}
TY  - JOUR
AU  - Jean-Louis Barrat
AU  - Daniel R. Neuville
TI  - From everyday glass to disordered solids: Foreword
JO  - Comptes Rendus. Physique
PY  - 2023
SP  - 5
EP  - 8
VL  - 24
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.165
LA  - en
ID  - CRPHYS_2023__24_S1_5_0
ER  - 
%0 Journal Article
%A Jean-Louis Barrat
%A Daniel R. Neuville
%T From everyday glass to disordered solids: Foreword
%J Comptes Rendus. Physique
%D 2023
%P 5-8
%V 24
%N S1
%I Académie des sciences, Paris
%R 10.5802/crphys.165
%G en
%F CRPHYS_2023__24_S1_5_0
Jean-Louis Barrat; Daniel R. Neuville. From everyday glass to disordered solids: Foreword. Comptes Rendus. Physique, Volume 24 (2023) no. S1, pp. 5-8. doi : 10.5802/crphys.165. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.165/

[1] D. S. Brauer; L. Hupa Glass as a biomaterial: strategies for optimising bioactive glasses for clinical applications, C. R. Géosci., Volume 354 (2022) no. S1, pp. 185-197

[2] M. H. Braga; C. M. Subramaniyam; A. J. Murchison; B. John; J. B. Goodenough Nontraditional, safe, high voltage rechargeable cells of long cycle life, J. Am. Chem. Soc., Volume 140 (2018), pp. 6343-6352 | DOI

[3] D. R. Neuville Glass, an ubiquitous material, C. R. Géosci., Volume 354 (2022), pp. 1-14 | DOI

[4] G. S. Parks; H. M. Huffman Glass as a fourth state of matter, Science, Volume 64 (1926), pp. 363-364 | DOI

[5] S. N. Gladstone; K. Laidler; H. Eyring The Theory of Rate Processes, McGraw-Hill, New-York, 1941

[6] H. D. Weymann On the hole theory of viscosity, compressibility and expansivity of liquids, Kolloid-Z. Zeitschrift Polymere, Volume 181 (1962), pp. 131-137 | DOI

[7] D. Turnbull; M. H. Cohen Free-volume model of the amorphous phase: glass transition, J. Phys. Chem., Volume 34 (1961), pp. 120-125 | DOI

[8] D. Turnbull; M. H. Cohen On the free-volume model of the liquid-glass transition: glass transition, J. Phys. Chem., Volume 52 (1970), pp. 3038-3041 | DOI

[9] G. Adam; J. H. Gibbs On the temperature dependence of cooperative relaxation properties in glass-forming liquids, J. Chem. Phys., Volume 43 (1965), pp. 139-154 | DOI

[10] G. Parisi Nobel Lecture: Multiple equilibria (2022) (preprint, arXiv:2304.00580) | DOI

[11] G. Biroli; J. P. Bouchaud The RFOT Theory of Glasses: Recent Progress and Open Issues, C. R. Phys., Volume 24 (2023) no. S1, pp. 9-23 | DOI

[12] O. Dauchot; F. Ladieu; C. Patrick Royall The glass transition in molecules, colloids and grains: universality and specificity, C. R. Phys., Volume 24 (2023) no. S1, pp. 25-56 | DOI

[13] J. L. Barrat; L. Berthier Computer simulations of the glass transition and glassy materials, C. R. Phys., Volume 24 (2023) no. S1, pp. 57-72 | DOI

[14] A. Tanguy Vibrations and heat transfer in glasses: the role played by Disorder, C. R. Phys., Volume 24 (2023) no. S1, pp. 73-97 | DOI

[15] T. Rouxel Some strange things about the mechanical properties of glass, C. R. Phys., Volume 24 (2023) no. S1, pp. 99-112 | DOI

[16] B. Tyukodi; A. Barbot; R. Garcia-Garcia; M. Lerbinger; S. Patinet; D. Vandembroucq Coarse-graining amorphous plasticity: impact of rejuvenation and disorder, C. R. Phys., Volume 24 (2023) no. S1, pp. 113-131 | DOI

[17] M. Micoulaut Topological ordering during flexible to rigid transitions in disordered networks, C. R. Phys., Volume 24 (2023) no. S1, pp. 133-154 | DOI

[18] Y. Champion Entropy of metallic glasses and the size effect on glass transition, C. R. Phys., Volume 24 (2023) no. S1, pp. 155-164 | DOI

[19] A. Cornet; B. Ruta New pathways to control the evolution of the atomic motion in metallic glasses, C. R. Phys., Volume 24 (2023) no. S1, pp. 165-175 | DOI

[20] A. Angell Relaxation in liquids, polymers and plastic crystals - strong/fragile patterns and problems, J. Non-Cryst. Solids, Volume 131-133 (1991), pp. 13-31 | DOI

[21] C. Alba-Simionesco Organic glass-forming liquids and the concept of fragility, C. R. Phys., Volume 24 (2023) no. S1, pp. 177-198 | DOI

[22] L. Cormier; L. Galoisy; G. Lelong; G. Calas From nanoscale heterogeneities to nanolites: cation clustering in glasses, C. R. Phys., Volume 24 (2023) no. S1, pp. 199-214 | DOI

[23] C. Le Losq; D. R. Neuville; P. Florian; D. Massiot; Z. Zhou; W. Chen; N. Greaves Percolation channels: a universal idea to describe the atomic structure of glasses and melts, Sci. Rep., Volume 7 (2017), 16490 | DOI

[24] D. Di Genova; R. A Brooker; H. M. Mader; J. W. E. Drewitt; A. Longo; J. Deubener; D. R. Neuville; S. Fanara; O. Shebanova; S. Anzellini; F. Arzilli; E. C. Bamber; L. Hennet; G. La Spina; N. Miyajima In situ observation of nanolite growth in volcanic melt: a driving force for explosive eruptions, Sci. Adv., Volume 6 (2020) no. 39, eabb0413 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Elastic properties of glasses: a multiscale approach

Tanguy Rouxel

C. R. Méca (2006)


Organic Glass-Forming Liquids and the Concept of Fragility

Christiane Alba-Simionesco

C. R. Phys (2023)


Propriétés thermiques et optiques des verres du système Sb2S3–As2S3–Sb2Te3

N'dri Kouamé; Joseph Sei; Denise Houphouët-Boigny; ...

C. R. Chim (2007)