[Comment tirer parti du pompage et de la dissipation pour stabiliser et manipuler des états quantiques à $N$ corps]
We give a pedagogical introduction to the basic concepts of quantum fluids of light and to the different techniques that are being developed to exploit driving and dissipation to stabilize and manipulate interesting many-body states in quantum fluids of light in cavity configurations. In the weakly interacting regime, this approach has allowed to study, among others, superfluid light, nonequilibrium Bose–Einstein condensation, photonic analogs of Hall effects, and is opening the way towards the realization of a new family of analog models of gravity. In the strongly interacting regime, the recent observations of Mott insulators and baby Laughlin fluids of light are opening promising avenues towards the study of novel strongly correlated many-body states.
Nous donnons une introduction pédagogique aux concepts de base des fluides quantiques de lumière et aux différentes techniques qui ont été développées pour exploiter le pompage et la dissipation afin de stabiliser et de manipuler des états à $N$ corps intéressants dans des fluides quantiques de lumière en cavité. Dans le régime d’interaction faible, cette approche a permis d’étudier, entre autres, la lumière superfluide, la condensation de Bose–Einstein hors d’équilibre, les analogues photoniques des effets Hall, et ouvre la voie à la réalisation d’une nouvelle famille de modèles analogiques de la gravité. Dans le régime d’interaction forte, les observations récentes d’isolants de Mott et de tout petits fluides de Laughlin faits de lumière ouvrent des voies prometteuses pour l’étude de nouveaux états à $N$ corps fortement corrélés.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Systèmes dissipatifs pompés, problème à $N$ corps, mécanique statistique hors d’équilibre, fluides quantiques fortement corrélés, fluides quantiques de lumière
Iacopo Carusotto 1
CC-BY 4.0
@article{CRPHYS_2025__26_G1_533_0,
author = {Iacopo Carusotto},
title = {How to exploit driving and dissipation to stabilize and manipulate quantum many-body states},
journal = {Comptes Rendus. Physique},
pages = {533--568},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {26},
doi = {10.5802/crphys.258},
language = {en},
}
Iacopo Carusotto. How to exploit driving and dissipation to stabilize and manipulate quantum many-body states. Comptes Rendus. Physique, Volume 26 (2025), pp. 533-568. doi: 10.5802/crphys.258
[1] Bose–Einstein condensation and superfluidity, International Series of Monographs on Physics, 164, Oxford University Press, 2016, 512 pages | DOI | Zbl
[2] Quantum simulations with ultracold atoms in optical lattices, Science, Volume 357 (2017) no. 6355, pp. 995-1001 | DOI
[3] Many-body physics with ultracold gases, Rev. Mod. Phys., Volume 80 (2008) no. 3, pp. 885-964 | DOI
[4] Topological bands for ultracold atoms, Rev. Mod. Phys., Volume 91 (2019) no. 1, 015005 | DOI | MR
[5] Quantum fluids of light, Rev. Mod. Phys., Volume 85 (2013) no. 1, pp. 299-366 | DOI
[6] Quantum nonlinear optics – photon by photon, Nature Photon., Volume 8 (2014) no. 9, pp. 685-694 | DOI
[7] Photonic materials in circuit quantum electrodynamics, Nat. Phys., Volume 16 (2020) no. 3, pp. 268-279 | DOI
[8] Non-equilibrium Bose–Einstein condensation in photonic systems, Nat. Rev. Phys., Volume 4 (2022) no. 7, pp. 470-488 | DOI
[9] Keldysh field theory for driven open quantum systems, Rep. Prog. Phys., Volume 79 (2016) no. 9, 096001 | DOI
[10] Quantum states and phases in driven open quantum systems with cold atoms, Nat. Phys., Volume 4 (2008) no. 11, pp. 878-883 | DOI
[11] Majorana modes in driven-dissipative atomic superfluids with a zero Chern number, Phys. Rev. Lett., Volume 109 (2012), 130402 | DOI
[12] Dissipative preparation of Chern insulators, Phys. Rev. A, Volume 91 (2015), 042117 | DOI
[13] Cavity QED with quantum gases: new paradigms in many-body physics, Adv. Phys., Volume 70 (2021) no. 1, pp. 1-153 | DOI
[14] Emerging dissipative phases in a superradiant quantum gas with tunable decay, Phys. Rev. X, Volume 11 (2021), 041046 | DOI
[15] Entanglement and replica symmetry breaking in a driven-dissipative quantum spin glass, Phys. Rev. X, Volume 14 (2024) no. 1, 011026 | DOI
[16] Continuous Bose–Einstein condensation, Nature, Volume 606 (2022) no. 7915, pp. 683-687 | DOI
[17] Bistability in a driven-dissipative superfluid, Phys. Rev. Lett., Volume 116 (2016), 235302 | DOI
[18] Experimental observation of a dissipative phase transition in a multi-mode many-body quantum system, New J. Phys., Volume 24 (2022) no. 10, 103034 | DOI
[19] Paraxial fluids of light (2025) | arXiv
[20] Superfluid motion and drag-force cancellation in a fluid of light, Nat. Commun., Volume 9 (2018) no. 1, pp. 1-6 | DOI
[21] Observation of the Bogoliubov dispersion in a fluid of light, Phys. Rev. Lett., Volume 121 (2018) no. 18, 183604 | DOI
[22] Optical vortices, Opt. Commun., Volume 73 (1989) no. 5, pp. 403-408 | DOI
[23] Hydrodynamic phenomena in laser physics: modes with flow and vortices behind an obstacle in an optical channel, Phys. Rev. A, Volume 54 (1996), pp. 880-892 | DOI
[24] Observation of Jones–Roberts solitons in a paraxial quantum fluid of light, Phys. Rev. Lett., Volume 134 (2025), 233401 | DOI
[25] Turbulent dynamics in a two-dimensional paraxial fluid of light, Phys. Rev. A, Volume 108 (2023), 063512 | DOI
[26] Exploring the dynamics of the Kelvin–Helmholtz instability in paraxial fluids of light, Phys. Rev. A, Volume 109 (2024) no. 4, 043704 | DOI | MR
[27] Classical Rayleigh–Jeans condensation of light waves: observation and thermodynamic characterization, Phys. Rev. Lett., Volume 125 (2020), 244101 | DOI
[28] Spatial beam self-cleaning in multimode fibres, Nature Photon., Volume 11 (2017) no. 4, pp. 237-241 | DOI
[29] Thermalization and Bose–Einstein condensation of quantum light in bulk nonlinear media, Eur. Phys. Lett., Volume 115 (2016) no. 2, 24002 | DOI
[30] Analogue cosmological particle creation in an ultracold quantum fluid of light, Nat. Commun., Volume 13 (2022) no. 1, pp. 1-7 | DOI
[31] Quantum nonlinear optics with single photons enabled by strongly interacting atoms, Nature, Volume 488 (2012) no. 7409, pp. 57-60 | DOI
[32] Attractive photons in a quantum nonlinear medium, Nature, Volume 502 (2013) no. 7469, pp. 71-75 | DOI
[33] Microcavities, Oxford Science Publications, Oxford University Press, 2011, 488 pages
[34] Classical electrodynamics, John Wiley & Sons, 1999 | MR | Zbl
[35] Folgerungen aus der Diracschen Theorie des Positrons, Z. Phys., Volume 98 (1936) no. 11, pp. 714-732 | Zbl | DOI
[36] Using high-power lasers for detection of elastic photon-photon scattering, Phys. Rev. Lett., Volume 96 (2006), 083602 | DOI
[37] Compton sources for the observation of elastic photon-photon scattering events, Phys. Rev. Accel. Beams, Volume 19 (2016) no. 9, 093401 | DOI
[38] Exploring quantum vacuum with low-energy photons, Int. J. Quantum Inf., Volume 10 (2012) no. 08, 1241002 | Zbl | DOI
[39] Problems of studying scattering at and colliders (2023) | arXiv
[40] Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC, Nat. Phys., Volume 13 (2017) no. 9, pp. 852-858 | DOI
[41] Solid state physics, Cengage Learning, Cengage, 2022
[42] The elements of nonlinear optics, Cambridge Studies in Modern Optics, 9, Cambridge University Press, 2008, xiv+344 pages
[43] Nonlinear optics, Academic Press Inc., 2008, xix+613 pages | MR
[44] Circuit quantum electrodynamics, Rev. Mod. Phys., Volume 93 (2021), 025005 | MR | DOI
[45] Single-photon nonlinear optics with Kerr-type nanostructured materials, Phys. Rev. B, Volume 85 (2012), 033303 | DOI
[46] Dissipationless flow and sharp threshold of a polariton condensate with long lifetime, Phys. Rev. X, Volume 3 (2013) no. 4, 041015 | DOI
[47] Bose–Einstein condensation of long-lifetime polaritons in thermal equilibrium, Phys. Rev. Lett., Volume 118 (2017) no. 1, 016602 | DOI
[48] et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field, Nat. Phys., Volume 13 (2017) no. 2, pp. 146-151 | DOI
[49] et al. Spectroscopic signatures of localization with interacting photons in superconducting qubits, Science, Volume 358 (2017) no. 6367, pp. 1175-1179 | DOI | MR
[50] Realization of fractional quantum Hall state with interacting photons, Science, Volume 384 (2024) no. 6695, pp. 579-584 | DOI | MR
[51] Quantum optics, Graduate Texts in Physics, Springer, 2008, 425 pages | DOI | MR | Zbl
[52] Quantum vacuum properties of the intersubband cavity polariton field, Phys. Rev. B, Volume 72 (2005), 115303 | DOI
[53] Input-output theory of cavities in the ultrastrong coupling regime: the case of time-independent cavity parameters, Phys. Rev. A, Volume 74 (2006), 033811 | DOI
[54] Ultrastrong coupling between light and matter, Nat. Rev. Phys., Volume 1 (2019) no. 1, pp. 19-40 | DOI
[55] Quantum noise, Springer Series in Synergetics, Springer, 2004, xxii+450 pages | MR
[56] Theory of an optical maser, Phys. Rev., Volume 134 (1964), p. A1429-A1450 | DOI
[57] Quantum optics, Cambridge University Press, 1997, xxii+630 pages | DOI
[58] The theory of open quantum systems, Oxford University Press, 2002, 648 pages | MR | Zbl
[59] Towards strongly correlated photons in arrays of dissipative nonlinear cavities under a frequency-dependent incoherent pumping, C. R. Phys., Volume 17 (2016) no. 8, pp. 836-860 | DOI
[60] Lindbladian approximation beyond ultraweak coupling, Phys. Rev. E, Volume 104 (2021), 014110 | DOI | MR
[61] Benchmarking quantum master equations beyond ultraweak coupling, Phys. Rev. B, Volume 110 (2024), 064319 | DOI
[62] Collective excitations of a strongly correlated nonequilibrium photon fluid across the insulator-superfluid phase transition, Phys. Rev. Lett., Volume 131 (2023) no. 19, 193604 | DOI
[63] Induced self-stabilization in fractional quantum Hall states of light, Phys. Rev. X, Volume 4 (2014), 031039 | DOI
[64] A dissipatively stabilized Mott insulator of photons, Nature, Volume 566 (2019) no. 7742, pp. 51-57 | DOI
[65] Photon condensation in circuit quantum electrodynamics by engineered dissipation, New J. Phys., Volume 14 (2012) no. 5, 055005 | DOI
[66] The bosonic skin effect: boundary condensation in asymmetric transport, SciPost Phys., Volume 16 (2024), 029 | DOI | MR | Zbl
[67] Cavity-based reservoir engineering for Floquet-engineered superconducting circuits, Phys. Rev. Lett., Volume 129 (2022), 233601 | DOI
[68] Cooling and autonomous feedback in a Bose–Hubbard chain with attractive interactions, Phys. Rev. Lett., Volume 115 (2015), 240501 | DOI
[69] Dissipative stabilization of entangled cat states using a driven Bose–Hubbard dimer, Quantum, Volume 2 (2018), 58, 11 pages | DOI
[70] Engineered dissipation for quantum information science, Nat. Rev. Phys., Volume 4 (2022) no. 10, pp. 660-671 | DOI
[71] Autonomous stabilization with programmable stabilized state, Nat. Commun., Volume 15 (2024), 6978, 6 pages | DOI
[72] Exponential suppression of bit-flips in a qubit encoded in an oscillator, Nat. Phys., Volume 16 (2020) no. 5, pp. 509-513 | DOI
[73] The cavity Kerr medium model and the surprising history around it, Quantum fluids of light and matter (Proceedings of the International School of Physics “Enrico Fermi”), IOS Press, 2025 no. 209, pp. 5-21 | DOI
[74] Bose–Einstein condensates in atomic gases: simple theoretical results, Coherent atomic matter waves (R. Kaiser; C. Westbrook; F. David, eds.), EDP Sciences; Springer (2001), pp. 1-136 (Lecture notes of Les Houches summer school) | HAL | DOI
[75] Superfluidity and critical velocities in nonequilibrium Bose–Einstein condensates, Phys. Rev. Lett., Volume 105 (2010) no. 2, 020602 | DOI
[76] Pattern formation outside of equilibrium, Rev. Mod. Phys., Volume 65 (1993) no. 3, pp. 851-1112 | DOI | Zbl
[77] The world of the complex Ginzburg–Landau equation, Rev. Mod. Phys., Volume 74 (2002) no. 1, pp. 99-143 | DOI | MR | Zbl
[78] Spatial dissipative structures in passive optical systems, Phys. Rev. Lett., Volume 58 (1987) no. 21, 2209 | MR | DOI
[79] Spontaneous microcavity-polariton coherence across the parametric threshold: quantum Monte Carlo studies, Phys. Rev. B, Volume 72 (2005) no. 12, 125335 | DOI
[80] Stochastic classical field model for polariton condensates, Phys. Rev. B, Volume 79 (2009) no. 16, 165302 | DOI
[81] Bogoliubov excitations driven by thermal lattice phonons in a quantum fluid of light, Phys. Rev. X, Volume 13 (2023) no. 4, 041058 | DOI
[82] Stochastic and tensor network methods for open dissipative quantum lattice models (2025) Talk at the “MEOQS2025 — Methods for many-body open quantum systems” workshop, Trento (2025)
[83] Commuting Heisenberg operators as the quantum response problem: time-normal averages in the truncated Wigner representation, Phys. Rev. A, Volume 80 (2009), 033624 | DOI
[84] The truncated Wigner method for Bose-condensed gases: limits of validity and applications, J. Phys. B. At. Mol. Opt. Phys., Volume 35 (2002) no. 17, 3599 | DOI
[85] Dynamical quantum noise in trapped Bose–Einstein condensates, Phys. Rev. A, Volume 58 (1998), pp. 4824-4835 | DOI
[86] Quantum optical tunneling: a representation-free theory valid near the state-equation turning points, Phys. Rev. A, Volume 33 (1986), pp. 4462-4464 | DOI
[87] Quantum-tunneling rates and stationary solutions in dispersive optical bistability, Phys. Rev. A, Volume 38 (1988), pp. 2409-2422 | DOI
[88] Spontaneous Beliaev–Landau scattering out of equilibrium, Phys. Rev. A, Volume 96 (2017) no. 5, 053854 | MR | DOI
[89] Quantum corrections to the dynamics of interacting bosons: beyond the truncated Wigner approximation, Phys. Rev. A, Volume 68 (2003) no. 5, 053604 | DOI
[90] Probing microcavity polariton superfluidity through resonant Rayleigh scattering, Phys. Rev. Lett., Volume 93 (2004), 166401 | DOI
[91] Superfluidity of polaritons in semiconductor microcavities, Nature Phys., Volume 5 (2009) no. 11, pp. 805-810 | DOI
[92] High-resolution coherent probe spectroscopy of a polariton quantum fluid, Phys. Rev. Lett., Volume 129 (2022) no. 10, 103601 | DOI
[93] Spectrum and entanglement of phonons in quantum fluids of light, Phys. Rev. A, Volume 89 (2014) no. 4, 043819 | DOI
[94] Lattices of quantized vortices in polariton superfluids, C. R. Phys., Volume 17 (2016) no. 8, pp. 893-907 | DOI
[95] Analogue gravity, Living Rev. Relativ., Volume 14 (2011), pp. 1-159 | Zbl
[96] Analog Hawking radiation from an acoustic black hole in a flowing polariton superfluid, Phys. Rev. B, Volume 86 (2012) no. 14, 144505 | DOI
[97] Acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons, Phys. Rev. Lett., Volume 114 (2015) no. 3, 036402 | DOI
[98] Polariton fluids as quantum field theory simulators on tailored curved spacetimes, Phys. Rev. Lett., Volume 135 (2025), 023401, 7 pages | DOI | MR
[99] Observation of thermal Hawking radiation and its temperature in an analogue black hole, Nature, Volume 569 (2019) no. 7758, pp. 688-691 | DOI
[100] Entangled phonons in atomic Bose–Einstein condensates, Phys. Rev. A, Volume 90 (2014) no. 3, 033607 | DOI
[101] Lectures on the quantum Hall effect (2016) | arXiv
[102] Anomalous and quantum Hall effects in lossy photonic lattices, Phys. Rev. Lett., Volume 112 (2014) no. 13, 133902 | DOI
[103] Topological photonics, Rev. Mod. Phys., Volume 91 (2019) no. 1, 015006 | DOI | MR
[104] Quantized Hall drift in a frequency-encoded photonic Chern insulator (2024) | arXiv
[105] The Cerenkov effect revisited: from swimming ducks to zero modes in gravitational analogues, Analogue gravity phenomenology: analogue spacetimes and horizons, from theory to experiment (Lecture Notes in Physics), Springer, 2013 no. 870, pp. 109-144 | DOI | Zbl
[106] Observation of the diffusive Nambu–Goldstone mode of a non-equilibrium phase transition, Nat. Phys., Volume 21 (2025), pp. 924-930 | DOI
[107] Statistical mechanics, John Wiley & Sons, 1987, xiv+498 pages
[108] Spontaneous coherent phase transition of polaritons in CdTe microcavities, Phys. Rev. Lett., Volume 94 (2005) no. 18, 187401 | DOI
[109] Spatial and spectral shape of inhomogeneous nonequilibrium exciton-polariton condensates, Phys. Rev. B, Volume 77 (2008), 115340 | DOI
[110] Spontaneous formation and optical manipulation of extended polariton condensates, Nat. Phys., Volume 6 (2010) no. 11, pp. 860-864 | DOI
[111] Exciton-polaritons in lattices: a non-linear photonic simulator, C. R. Phys., Volume 17 (2016) no. 8, pp. 934-945 | DOI
[112] et al. Polariton condensation in solitonic gap states in a one-dimensional periodic potential, Nat. Commun., Volume 4 (2013) no. 1, 1749 | DOI
[113] Unstable and stable regimes of polariton condensation, Optica, Volume 5 (2018) no. 10, pp. 1163-1170 | DOI
[114] Supersolidity of polariton condensates in photonic crystal waveguides, Phys. Rev. Lett., Volume 134 (2025) no. 5, 056002 | DOI
[115] Emerging supersolidity in photonic-crystal polariton condensates, Nature, Volume 639 (2025), pp. 337-341 | DOI
[116] Supersolidity in ultracold dipolar gases, Nat. Rev. Phys., Volume 5 (2023) no. 12, pp. 735-743 | DOI
[117] Optical frequency combs: coherently uniting the electromagnetic spectrum, Science, Volume 369 (2020), eaay3676, 12 pages | DOI
[118] Integrated optical frequency comb technologies, Nature Photon., Volume 16 (2022) no. 2, pp. 95-108 | DOI
[119] Photon lasing in microcavity: similarities with a polariton condensate, Phys. Rev. B, Volume 76 (2007), 201305 | DOI
[120] Bose–Einstein condensation of long-lifetime polaritons in thermal equilibrium, Phys. Rev. Lett., Volume 118 (2017) no. 1, 016602 | DOI
[121] Laser operation and Bose–Einstein condensation: analogies and differences, Universal themes of Bose–Einstein condensation, Cambridge University Press, 2017, pp. 409-423 | DOI
[122] Lectures at Collège de France (1999-2000) https://www.phys.ens.fr/...
[123] Fundamentals of magnonics, Lecture Notes in Physics, 969, Springer, 2020, xvii+358 pages | DOI
[124] Condensation of the ideal Bose gas as a cooperative transition, Phys. Rev., Volume 166 (1968), pp. 152-158 | DOI
[125] Goldstone mode of optical parametric oscillators in planar semiconductor microcavities in the strong-coupling regime, Phys. Rev. A, Volume 76 (2007), 043807 | DOI
[126] Laserlight–first example of a second-order phase transition far away from thermal equilibrium, Z. Phys. A, Hadrons Nuclei, Volume 237 (1970), pp. 31-46 | DOI
[127] Absence of long-range coherence in the parametric emission of photonic wires, Phys. Rev. B, Volume 74 (2006), 245316, 6 pages | DOI
[128] The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films, Rev. Mod. Phys., Volume 59 (1987), pp. 1001-1066 | DOI
[129] Two-dimensional Bose fluids: an atomic physics perspective, Riv. Nuovo Cim., Volume 34 (2011) no. 6, pp. 389-434 | DOI
[130] Two-dimensional superfluidity of exciton polaritons requires strong anisotropy, Phys. Rev. X, Volume 5 (2015) no. 1, 011017 | DOI
[131] Keldysh field theory for driven open quantum systems, Rep. Prog. Phys., Volume 79 (2016) no. 9, 096001 | DOI
[132] Tuning across universalities with a driven open condensate, Phys. Rev. X, Volume 7 (2017) no. 4, 041006 | DOI
[133] Kardar–Parisi–Zhang universality in a one-dimensional polariton condensate, Nature, Volume 608 (2022) no. 7924, pp. 687-691 | DOI
[134] Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics, Phys. Rev. A, Volume 93 (2016) no. 4, 043827 | DOI
[135] A perspective on synthetic dimensions in photonics, Laser Photonics Rev., Volume 17 (2023) no. 7, 2200518 | DOI
[136] Synthetic dimension in photonics, Optica, Volume 5 (2018) no. 11, pp. 1396-1405 | DOI
[137] Quantum walk comb in a fast gain laser, Science, Volume 382 (2023) no. 6669, pp. 434-438 | DOI
[138] Collective quench dynamics of active photonic lattices in synthetic dimensions, Nat. Phys., Volume 21 (2025), pp. 1134-1140 | DOI
[139] et al. Observation of topological frequency combs, Science, Volume 384 (2024) no. 6702, pp. 1356-1361 | DOI
[140] An appetizer to modern developments on the Kardar–Parisi–Zhang universality class, Phys. A: Stat. Mech. Appl., Volume 504 (2018), pp. 77-105 (Lecture Notes of the 14th International Summer School on Fundamental Problems in Statistical Physics) | DOI | MR | Zbl
[141] On the perturbation expansion of the KPZ equation, J. Stat. Phys., Volume 93 (1998) no. 1, pp. 143-154 | DOI | MR | Zbl
[142] Critical exponents of the KPZ equation via multi-surface coding numerical simulations, J. Phys. A. Math. Gen., Volume 33 (2000) no. 46, 8181 | MR | Zbl | DOI
[143] Nonperturbative renormalization group for the Kardar–Parisi–Zhang equation, Phys. Rev. Lett., Volume 104 (2010), 150601 | DOI
[144] Strongly interacting photons in a nonlinear cavity, Phys. Rev. Lett., Volume 79 (1997) no. 8, pp. 1467-1470 | DOI
[145] Fermionized photons in an array of driven dissipative nonlinear cavities, Phys. Rev. Lett., Volume 103 (2009), 033601 | DOI
[146] QuTiP: an open-source Python framework for the dynamics of open quantum systems, Comput. Phys. Commun., Volume 183 (2012) no. 8, pp. 1760-1772 | DOI
[147] Simple theoretical tools for low dimension Bose gases, J. Phy. IV France, Volume 116 (2004), pp. 89-132 | DOI
[148] Atom-photon interactions: basic processes and applications, Physics Textbook, John Wiley & Sons, 1998, xxii+656 pages | DOI
[149] Photon transport in a Bose–Hubbard chain of superconducting artificial atoms, Phys. Rev. Lett., Volume 126 (2021), 180503 | DOI
[150] Fractional quantum Hall states of photons in an array of dissipative coupled cavities, Phys. Rev. Lett., Volume 108 (2012), 206809 | DOI
[151] Many-body braiding phases in a rotating strongly correlated photon gas, Phys. Lett. A, Volume 377 (2013) no. 34–36, pp. 2074-2078 | DOI | MR | Zbl
[152] Observation of Laughlin states made of light, Nature, Volume 582 (2020) no. 7810, pp. 41-45 | DOI
[153] Photon-photon interactions via Rydberg blockade, Phys. Rev. Lett., Volume 107 (2011), 133602 | DOI
[154] Synthetic Landau levels for photons, Nature, Volume 534 (2016) no. 7609, pp. 671-675 | DOI
[155] Anyons and the quantum Hall effect. A pedagogical review, Ann. Phys., Volume 323 (2008) no. 1, pp. 204-249 | DOI | MR | Zbl
[156] -anyons in small atomic Bose–Einstein condensates, Phys. Rev. Lett., Volume 87 (2001) no. 1, 010402 | DOI
[157] Interferometric measurements of many-body topological invariants using mobile impurities, Nat. Commun., Volume 7 (2016) no. 1, 11994 | DOI
[158] Anyonic molecules in atomic fractional quantum Hall liquids: a quantitative probe of fractional charge and anyonic statistics, Phys. Rev. X, Volume 10 (2020) no. 4, 041058 | DOI
[159] Hard-wall confinement of a fractional quantum Hall liquid, Phys. Rev. A, Volume 96 (2017) no. 4, 043607 | DOI
[160] Quantum nonlinear optics on the edge of a few-particle fractional quantum Hall fluid in a small lattice, Phys. Rev. Lett., Volume 133 (2024) no. 18, 183401 | DOI
[161] Spectroscopy of edge and bulk collective modes in fractional Chern insulators, Phys. Rev. Res., Volume 6 (2024), L012054, 6 pages | DOI
[162] Phase diagram of incoherently driven strongly correlated photonic lattices, Phys. Rev. A, Volume 96 (2017) no. 2, 023839 | DOI
[163] Generation and spectroscopic signatures of a fractional quantum Hall liquid of photons in an incoherently pumped optical cavity, Phys. Rev. A, Volume 96 (2017) no. 5, 053808 | DOI
[164] Autonomous stabilization of photonic Laughlin states through angular momentum potentials, Phys. Rev. A, Volume 104 (2021) no. 2, 023704 | DOI | MR
[165] Stabilizing the Laughlin state of light: dynamics of hole fractionalization, SciPost Phys., Volume 13 (2022) no. 5, 107, 34 pages | MR | DOI
[166] Chemical potential for light by parametric coupling, Phys. Rev. B, Volume 92 (2015), 174305 | DOI
[167] Stabilizing strongly correlated photon fluids with non-Markovian reservoirs, Phys. Rev. A, Volume 96 (2017) no. 3, 033828 | DOI
[168] Quantum vacuum excitation of a quasinormal mode in an analog model of black hole spacetime, Phys. Rev. Lett., Volume 130 (2023) no. 11, 111501 | DOI
[169] Topological quantum matter in synthetic dimensions, Nat. Rev. Phys., Volume 1 (2019) no. 5, pp. 349-357 | DOI
[170] Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys., Volume 80 (2008), pp. 1083-1159 | DOI | MR | Zbl
[171] Gain engineering and topological atom laser in synthetic dimensions (2024) | arXiv
Cité par Sources :
Commentaires - Politique
