Comptes Rendus
Intervention en colloque
How to exploit driving and dissipation to stabilize and manipulate quantum many-body states
[Comment tirer parti du pompage et de la dissipation pour stabiliser et manipuler des états quantiques à $N$ corps]
Comptes Rendus. Physique, Volume 26 (2025), pp. 533-568

Cet article fait partie du numéro thématique Questions ouvertes dans le problème quantique à N corps coordonné par Yvan Castin et al..

We give a pedagogical introduction to the basic concepts of quantum fluids of light and to the different techniques that are being developed to exploit driving and dissipation to stabilize and manipulate interesting many-body states in quantum fluids of light in cavity configurations. In the weakly interacting regime, this approach has allowed to study, among others, superfluid light, nonequilibrium Bose–Einstein condensation, photonic analogs of Hall effects, and is opening the way towards the realization of a new family of analog models of gravity. In the strongly interacting regime, the recent observations of Mott insulators and baby Laughlin fluids of light are opening promising avenues towards the study of novel strongly correlated many-body states.

Nous donnons une introduction pédagogique aux concepts de base des fluides quantiques de lumière et aux différentes techniques qui ont été développées pour exploiter le pompage et la dissipation afin de stabiliser et de manipuler des états à $N$ corps intéressants dans des fluides quantiques de lumière en cavité. Dans le régime d’interaction faible, cette approche a permis d’étudier, entre autres, la lumière superfluide, la condensation de Bose–Einstein hors d’équilibre, les analogues photoniques des effets Hall, et ouvre la voie à la réalisation d’une nouvelle famille de modèles analogiques de la gravité. Dans le régime d’interaction forte, les observations récentes d’isolants de Mott et de tout petits fluides de Laughlin faits de lumière ouvrent des voies prometteuses pour l’étude de nouveaux états à $N$ corps fortement corrélés.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.258
Keywords: Driven-dissipative systems, many-body problem, nonequilibrium statistical mechanics, strongly correlated quantum fluids, quantum fluids of light
Mots-clés : Systèmes dissipatifs pompés, problème à $N$ corps, mécanique statistique hors d’équilibre, fluides quantiques fortement corrélés, fluides quantiques de lumière

Iacopo Carusotto 1

1 Pitaevskii BEC Center, INO-CNR and Dipartimento di Fisica, University of Trento, Italy
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2025__26_G1_533_0,
     author = {Iacopo Carusotto},
     title = {How to exploit driving and dissipation to stabilize and manipulate quantum many-body states},
     journal = {Comptes Rendus. Physique},
     pages = {533--568},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {26},
     doi = {10.5802/crphys.258},
     language = {en},
}
TY  - JOUR
AU  - Iacopo Carusotto
TI  - How to exploit driving and dissipation to stabilize and manipulate quantum many-body states
JO  - Comptes Rendus. Physique
PY  - 2025
SP  - 533
EP  - 568
VL  - 26
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.258
LA  - en
ID  - CRPHYS_2025__26_G1_533_0
ER  - 
%0 Journal Article
%A Iacopo Carusotto
%T How to exploit driving and dissipation to stabilize and manipulate quantum many-body states
%J Comptes Rendus. Physique
%D 2025
%P 533-568
%V 26
%I Académie des sciences, Paris
%R 10.5802/crphys.258
%G en
%F CRPHYS_2025__26_G1_533_0
Iacopo Carusotto. How to exploit driving and dissipation to stabilize and manipulate quantum many-body states. Comptes Rendus. Physique, Volume 26 (2025), pp. 533-568. doi: 10.5802/crphys.258

[1] Lev P. Pitaevskiĭ; Sandro Stringari Bose–Einstein condensation and superfluidity, International Series of Monographs on Physics, 164, Oxford University Press, 2016, 512 pages | DOI | Zbl

[2] Christian Gross; Immanuel Bloch Quantum simulations with ultracold atoms in optical lattices, Science, Volume 357 (2017) no. 6355, pp. 995-1001 | DOI

[3] Immanuel Bloch; Jean Dalibard; Wilhelm Zwerger Many-body physics with ultracold gases, Rev. Mod. Phys., Volume 80 (2008) no. 3, pp. 885-964 | DOI

[4] N. R. Cooper; Jean Dalibard; I. B. Spielman Topological bands for ultracold atoms, Rev. Mod. Phys., Volume 91 (2019) no. 1, 015005 | DOI | MR

[5] Iacopo Carusotto; Cristiano Ciuti Quantum fluids of light, Rev. Mod. Phys., Volume 85 (2013) no. 1, pp. 299-366 | DOI

[6] Darrick E. Chang; Vladan Vuletić; Mikhail D. Lukin Quantum nonlinear optics – photon by photon, Nature Photon., Volume 8 (2014) no. 9, pp. 685-694 | DOI

[7] Iacopo Carusotto; Andrew A. Houck; Alicia J. Kollár; Pedram Roushan; David I. Schuster; Jonathan Simon Photonic materials in circuit quantum electrodynamics, Nat. Phys., Volume 16 (2020) no. 3, pp. 268-279 | DOI

[8] Jacqueline Bloch; Iacopo Carusotto; Michiel Wouters Non-equilibrium Bose–Einstein condensation in photonic systems, Nat. Rev. Phys., Volume 4 (2022) no. 7, pp. 470-488 | DOI

[9] Lukas M. Sieberer; Michael Buchhold; Sebastian Diehl Keldysh field theory for driven open quantum systems, Rep. Prog. Phys., Volume 79 (2016) no. 9, 096001 | DOI

[10] Sebastian Diehl; A Micheli; Adrian Kantian; B. Kraus; H. P. Büchler; Peter Zoller Quantum states and phases in driven open quantum systems with cold atoms, Nat. Phys., Volume 4 (2008) no. 11, pp. 878-883 | DOI

[11] C.-E. Bardyn; M. A. Baranov; E. Rico; A. Imamoğlu; Peter Zoller; Sebastian Diehl Majorana modes in driven-dissipative atomic superfluids with a zero Chern number, Phys. Rev. Lett., Volume 109 (2012), 130402 | DOI

[12] Jan Carl Budich; Peter Zoller; Sebastian Diehl Dissipative preparation of Chern insulators, Phys. Rev. A, Volume 91 (2015), 042117 | DOI

[13] Farokh Mivehvar; Francesco Piazza; Tobias Donner; Helmut Ritsch Cavity QED with quantum gases: new paradigms in many-body physics, Adv. Phys., Volume 70 (2021) no. 1, pp. 1-153 | DOI

[14] Francesco Ferri; Rodrigo Rosa-Medina; Fabian Finger; Nishant Dogra; Matteo Soriente; Oded Zilberberg; Tobias Donner; Tilman Esslinger Emerging dissipative phases in a superradiant quantum gas with tunable decay, Phys. Rev. X, Volume 11 (2021), 041046 | DOI

[15] Brendan P Marsh; Ronen M. Kroeze; Surya Ganguli; Sarang Gopalakrishnan; Jonathan Keeling; Benjamin L. Lev Entanglement and replica symmetry breaking in a driven-dissipative quantum spin glass, Phys. Rev. X, Volume 14 (2024) no. 1, 011026 | DOI

[16] Chun-Chia Chen; Rodrigo González Escudero; Jiří Minář; Benjamin Pasquiou; Shayne Bennetts; Florian Schreck Continuous Bose–Einstein condensation, Nature, Volume 606 (2022) no. 7915, pp. 683-687 | DOI

[17] Ralf Labouvie; Bodhaditya Santra; Simon Heun; Herwig Ott Bistability in a driven-dissipative superfluid, Phys. Rev. Lett., Volume 116 (2016), 235302 | DOI

[18] Jens Benary; Christian Baals; Erik Bernhart; Jian Jiang; Marvin Röhrle; Herwig Ott Experimental observation of a dissipative phase transition in a multi-mode many-body quantum system, New J. Phys., Volume 24 (2022) no. 10, 103034 | DOI

[19] Quentin Glorieux; Clara Piekarski; Quentin Schibler; Tangui Aladjidi; Myrann Baker-Rasooli Paraxial fluids of light (2025) | arXiv

[20] Claire Michel; Omar Boughdad; Mathias Albert; Pierre-Élie Larré; Matthieu Bellec Superfluid motion and drag-force cancellation in a fluid of light, Nat. Commun., Volume 9 (2018) no. 1, pp. 1-6 | DOI

[21] Quentin Fontaine; Tom Bienaimé; Simon Pigeon; Élisabeth Giacobino; Alberto Bramati; Quentin Glorieux Observation of the Bogoliubov dispersion in a fluid of light, Phys. Rev. Lett., Volume 121 (2018) no. 18, 183604 | DOI

[22] P. Coullet; L. Gil; F. Rocca Optical vortices, Opt. Commun., Volume 73 (1989) no. 5, pp. 403-408 | DOI

[23] M. Vaupel; K. Staliunas; C. O. Weiss Hydrodynamic phenomena in laser physics: modes with flow and vortices behind an obstacle in an optical channel, Phys. Rev. A, Volume 54 (1996), pp. 880-892 | DOI

[24] Myrann Baker-Rasooli; Tangui Aladjidi; Nils A. Krause; Ashton S. Bradley; Quentin Glorieux Observation of Jones–Roberts solitons in a paraxial quantum fluid of light, Phys. Rev. Lett., Volume 134 (2025), 233401 | DOI

[25] Myrann Baker-Rasooli; Wei Liu; Tangui Aladjidi; Alberto Bramati; Quentin Glorieux Turbulent dynamics in a two-dimensional paraxial fluid of light, Phys. Rev. A, Volume 108 (2023), 063512 | DOI

[26] Tiago D. Ferreira; Jakub Garwoła; Nuno A. Silva Exploring the dynamics of the Kelvin–Helmholtz instability in paraxial fluids of light, Phys. Rev. A, Volume 109 (2024) no. 4, 043704 | DOI | MR

[27] K. Baudin; A. Fusaro; Katarzyna Krupa; J. Garnier; S. Rica; Guy Millot; A. Picozzi Classical Rayleigh–Jeans condensation of light waves: observation and thermodynamic characterization, Phys. Rev. Lett., Volume 125 (2020), 244101 | DOI

[28] Katarzyna Krupa; Alessandro Tonello; Badr Mohamed Shalaby; Marc Fabert; Alain Barthélémy; Guy Millot; Stefan Wabnitz; Vincent Couderc Spatial beam self-cleaning in multimode fibres, Nature Photon., Volume 11 (2017) no. 4, pp. 237-241 | DOI

[29] Alessio Chiocchetta; Pierre-Élie Larré; Iacopo Carusotto Thermalization and Bose–Einstein condensation of quantum light in bulk nonlinear media, Eur. Phys. Lett., Volume 115 (2016) no. 2, 24002 | DOI

[30] Jeff Steinhauer; Murad Abuzarli; Tangui Aladjidi; Tom Bienaimé; Clara Piekarski; Wei Liu; Élisabeth Giacobino; Alberto Bramati; Quentin Glorieux Analogue cosmological particle creation in an ultracold quantum fluid of light, Nat. Commun., Volume 13 (2022) no. 1, pp. 1-7 | DOI

[31] Thibault Peyronel; Ofer Firstenberg; Qi-Yu Liang; Sebastian Hofferberth; Alexey V. Gorshkov; Thomas Pohl; Mikhail D. Lukin; Vladan Vuletić Quantum nonlinear optics with single photons enabled by strongly interacting atoms, Nature, Volume 488 (2012) no. 7409, pp. 57-60 | DOI

[32] Ofer Firstenberg; Thibault Peyronel; Qi-Yu Liang; Alexey V. Gorshkov; Mikhail D. Lukin; Vladan Vuletić Attractive photons in a quantum nonlinear medium, Nature, Volume 502 (2013) no. 7469, pp. 71-75 | DOI

[33] Alexey V. Kavokin; Jeremy J. Baumberg; Guillaume Malpuech; Fabrice P. Laussy Microcavities, Oxford Science Publications, Oxford University Press, 2011, 488 pages

[34] John David Jackson Classical electrodynamics, John Wiley & Sons, 1999 | MR | Zbl

[35] Werner Heisenberg; Heinrich Euler Folgerungen aus der Diracschen Theorie des Positrons, Z. Phys., Volume 98 (1936) no. 11, pp. 714-732 | Zbl | DOI

[36] E. Lundström; G. Brodin; J. Lundin; M. Marklund; R. Bingham; J. Collier; J. T. Mendonça; P. Norreys Using high-power lasers for detection of elastic photon-photon scattering, Phys. Rev. Lett., Volume 96 (2006), 083602 | DOI

[37] D Micieli; I. Drebot; A. Bacci; Edoardo Milotti; V. Petrillo; M. Rossetti Conti; A. R. Rossi; E. Tassi; L. Serafini Compton sources for the observation of elastic photon-photon scattering events, Phys. Rev. Accel. Beams, Volume 19 (2016) no. 9, 093401 | DOI

[38] Edoardo Milotti; Federico Della Valle; Guido Zavattini; Giuseppe Messineo; Ugo Gastaldi; Ruggero Pengo; Giuseppe Ruoso; Danilo Babusci; Catalina Curceanu; Mihail Iliescu; C. Milardi Exploring quantum vacuum with low-energy photons, Int. J. Quantum Inf., Volume 10 (2012) no. 08, 1241002 | Zbl | DOI

[39] K. I. Beloborodov; T. A. Kharlamova; V. I. Telnov Problems of studying γγγγ scattering at e + e - and γγ colliders (2023) | arXiv

[40] ATLAS Collaboration Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC, Nat. Phys., Volume 13 (2017) no. 9, pp. 852-858 | DOI

[41] Neil W. Ashcroft; N. David Mermin Solid state physics, Cengage Learning, Cengage, 2022

[42] P. N. Butcher; D. Cotter The elements of nonlinear optics, Cambridge Studies in Modern Optics, 9, Cambridge University Press, 2008, xiv+344 pages

[43] R. W. Boyd Nonlinear optics, Academic Press Inc., 2008, xix+613 pages | MR

[44] Alexandre Blais; Arne L. Grimsmo; Steven M. Girvin; Andreas Wallraff Circuit quantum electrodynamics, Rev. Mod. Phys., Volume 93 (2021), 025005 | MR | DOI

[45] Sara Ferretti; Dario Gerace Single-photon nonlinear optics with Kerr-type nanostructured materials, Phys. Rev. B, Volume 85 (2012), 033303 | DOI

[46] Bryan Nelsen; Gangqiang Liu; Mark Steger; David W. Snoke; Ryan Balili; Ken West; Loren N. Pfeiffer Dissipationless flow and sharp threshold of a polariton condensate with long lifetime, Phys. Rev. X, Volume 3 (2013) no. 4, 041015 | DOI

[47] Yongbao Sun; Patrick Wen; Yoseob Yoon; Gangqiang Liu; Mark Steger; Loren N. Pfeiffer; Ken West; David W. Snoke; Keith A. Nelson Bose–Einstein condensation of long-lifetime polaritons in thermal equilibrium, Phys. Rev. Lett., Volume 118 (2017) no. 1, 016602 | DOI

[48] Pedram Roushan; Charles Neill; Anthony Megrant; Yu Chen; Ryan Babbush; Rami Barends; Brooks Campbell; Zijun Chen; Ben Chiaro; Andrew Dunsworth et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field, Nat. Phys., Volume 13 (2017) no. 2, pp. 146-151 | DOI

[49] Pedram Roushan; Charles Neill; J. Tangpanitanon; Victor M. Bastidas; Anthony Megrant; Rami Barends; Yu Chen; Zijun Chen; Ben Chiaro; Andrew Dunsworth et al. Spectroscopic signatures of localization with interacting photons in superconducting qubits, Science, Volume 358 (2017) no. 6367, pp. 1175-1179 | DOI | MR

[50] Can Wang; Feng-Ming Liu; Ming-Cheng Chen; He Chen; Xian-He Zhao; Chong Ying; Zhong-Xia Shang; Jian-Wen Wang; Yong-Heng Huo; Cheng-Zhi Peng; Xiaobo Zhu; Chao-Yang Lu; Jian-Wei Pan Realization of fractional quantum Hall state with interacting photons, Science, Volume 384 (2024) no. 6695, pp. 579-584 | DOI | MR

[51] D. F. Walls; Gerard J. Milburn Quantum optics, Graduate Texts in Physics, Springer, 2008, 425 pages | DOI | MR | Zbl

[52] Cristiano Ciuti; Gérald Bastard; Iacopo Carusotto Quantum vacuum properties of the intersubband cavity polariton field, Phys. Rev. B, Volume 72 (2005), 115303 | DOI

[53] Cristiano Ciuti; Iacopo Carusotto Input-output theory of cavities in the ultrastrong coupling regime: the case of time-independent cavity parameters, Phys. Rev. A, Volume 74 (2006), 033811 | DOI

[54] Anton Frisk Kockum; Adam Miranowicz; Simone De Liberato; Salvatore Savasta; Franco Nori Ultrastrong coupling between light and matter, Nat. Rev. Phys., Volume 1 (2019) no. 1, pp. 19-40 | DOI

[55] Crispin W. Gardiner; Peter Zoller Quantum noise, Springer Series in Synergetics, Springer, 2004, xxii+450 pages | MR

[56] Willis E. Lamb Theory of an optical maser, Phys. Rev., Volume 134 (1964), p. A1429-A1450 | DOI

[57] Marlan O. Scully; M. Suhail Zubairy Quantum optics, Cambridge University Press, 1997, xxii+630 pages | DOI

[58] Heinz-Peter Breuer; Francesco Petruccione The theory of open quantum systems, Oxford University Press, 2002, 648 pages | MR | Zbl

[59] José Lebreuilly; Michiel Wouters; Iacopo Carusotto Towards strongly correlated photons in arrays of dissipative nonlinear cavities under a frequency-dependent incoherent pumping, C. R. Phys., Volume 17 (2016) no. 8, pp. 836-860 | DOI

[60] Tobias Becker; Ling-Na Wu; André Eckardt Lindbladian approximation beyond ultraweak coupling, Phys. Rev. E, Volume 104 (2021), 014110 | DOI | MR

[61] Camilo Santiago Tello Breuer; Tobias Becker; André Eckardt Benchmarking quantum master equations beyond ultraweak coupling, Phys. Rev. B, Volume 110 (2024), 064319 | DOI

[62] Fabio Caleffi; Massimo Capone; Iacopo Carusotto Collective excitations of a strongly correlated nonequilibrium photon fluid across the insulator-superfluid phase transition, Phys. Rev. Lett., Volume 131 (2023) no. 19, 193604 | DOI

[63] Eliot Kapit; Mohammad Hafezi; Steven H. Simon Induced self-stabilization in fractional quantum Hall states of light, Phys. Rev. X, Volume 4 (2014), 031039 | DOI

[64] Ruichao Ma; Brendan Saxberg; Clai Owens; Nelson Leung; Yao Lu; Jonathan Simon; David I. Schuster A dissipatively stabilized Mott insulator of photons, Nature, Volume 566 (2019) no. 7742, pp. 51-57 | DOI

[65] D. Marcos; A. Tomadin; Sebastian Diehl; Peter Rabl Photon condensation in circuit quantum electrodynamics by engineered dissipation, New J. Phys., Volume 14 (2012) no. 5, 055005 | DOI

[66] Louis Garbe; Yuri Minoguchi; Julian Huber; Peter Rabl The bosonic skin effect: boundary condensation in asymmetric transport, SciPost Phys., Volume 16 (2024), 029 | DOI | MR | Zbl

[67] Francesco Petiziol; André Eckardt Cavity-based reservoir engineering for Floquet-engineered superconducting circuits, Phys. Rev. Lett., Volume 129 (2022), 233601 | DOI

[68] S. Hacohen-Gourgy; V. V. Ramasesh; C. De Grandi; I. Siddiqi; Steven M. Girvin Cooling and autonomous feedback in a Bose–Hubbard chain with attractive interactions, Phys. Rev. Lett., Volume 115 (2015), 240501 | DOI

[69] M. Mamaev; L. C. G. Govia; A. A. Clerk Dissipative stabilization of entangled cat states using a driven Bose–Hubbard dimer, Quantum, Volume 2 (2018), 58, 11 pages | DOI

[70] Patrick M. Harrington; Erich J. Mueller; Kater W. Murch Engineered dissipation for quantum information science, Nat. Rev. Phys., Volume 4 (2022) no. 10, pp. 660-671 | DOI

[71] Ziqian Li; Tanay Roy; Yao Lu; Eliot Kapit; David I. Schuster Autonomous stabilization with programmable stabilized state, Nat. Commun., Volume 15 (2024), 6978, 6 pages | DOI

[72] Raphaël Lescanne; Marius Villiers; Théau Peronnin; Alain Sarlette; Matthieu Delbecq; Benjamin Huard; Takis Kontos; Mazyar Mirrahimi; Zaki Leghtas Exponential suppression of bit-flips in a qubit encoded in an oscillator, Nat. Phys., Volume 16 (2020) no. 5, pp. 509-513 | DOI

[73] Luigi A. Lugiato; Franco Prati; Enrico Brambilla; Alessandra Gatti The cavity Kerr medium model and the surprising history around it, Quantum fluids of light and matter (Proceedings of the International School of Physics “Enrico Fermi”), IOS Press, 2025 no. 209, pp. 5-21 | DOI

[74] Yvan Castin Bose–Einstein condensates in atomic gases: simple theoretical results, Coherent atomic matter waves (R. Kaiser; C. Westbrook; F. David, eds.), EDP Sciences; Springer (2001), pp. 1-136 (Lecture notes of Les Houches summer school) | HAL | DOI

[75] Michiel Wouters; Iacopo Carusotto Superfluidity and critical velocities in nonequilibrium Bose–Einstein condensates, Phys. Rev. Lett., Volume 105 (2010) no. 2, 020602 | DOI

[76] Mark C. Cross; Pierre C. Hohenberg Pattern formation outside of equilibrium, Rev. Mod. Phys., Volume 65 (1993) no. 3, pp. 851-1112 | DOI | Zbl

[77] Igor S. Aranson; Lorenz Kramer The world of the complex Ginzburg–Landau equation, Rev. Mod. Phys., Volume 74 (2002) no. 1, pp. 99-143 | DOI | MR | Zbl

[78] Luigi A. Lugiato; René Lefever Spatial dissipative structures in passive optical systems, Phys. Rev. Lett., Volume 58 (1987) no. 21, 2209 | MR | DOI

[79] Iacopo Carusotto; Cristiano Ciuti Spontaneous microcavity-polariton coherence across the parametric threshold: quantum Monte Carlo studies, Phys. Rev. B, Volume 72 (2005) no. 12, 125335 | DOI

[80] Michiel Wouters; Vincenzo Savona Stochastic classical field model for polariton condensates, Phys. Rev. B, Volume 79 (2009) no. 16, 165302 | DOI

[81] Irénée Frérot; Amit Vashisht; Martina Morassi; Aristide Lemaître; Sylvain Ravets; Jacqueline Bloch; Anna Minguzzi; Maxime Richard Bogoliubov excitations driven by thermal lattice phonons in a quantum fluid of light, Phys. Rev. X, Volume 13 (2023) no. 4, 041058 | DOI

[82] M. H. Szymańska Stochastic and tensor network methods for open dissipative quantum lattice models (2025) Talk at the “MEOQS2025 — Methods for many-body open quantum systems” workshop, Trento (2025)

[83] B. Berg; L. I. Plimak; Anatoli Polkovnikov; M. K. Olsen; Michael Fleischhauer; W. P. Schleich Commuting Heisenberg operators as the quantum response problem: time-normal averages in the truncated Wigner representation, Phys. Rev. A, Volume 80 (2009), 033624 | DOI

[84] Alice Sinatra; Carlos Lobo; Yvan Castin The truncated Wigner method for Bose-condensed gases: limits of validity and applications, J. Phys. B. At. Mol. Opt. Phys., Volume 35 (2002) no. 17, 3599 | DOI

[85] M. J. Steel; M. K. Olsen; L. I. Plimak; P. D. Drummond; S. M. Tan; M. J. Collett; D. F. Walls; R. Graham Dynamical quantum noise in trapped Bose–Einstein condensates, Phys. Rev. A, Volume 58 (1998), pp. 4824-4835 | DOI

[86] P. D. Drummond Quantum optical tunneling: a representation-free theory valid near the state-equation turning points, Phys. Rev. A, Volume 33 (1986), pp. 4462-4464 | DOI

[87] K. Vogel; H. Risken Quantum-tunneling rates and stationary solutions in dispersive optical bistability, Phys. Rev. A, Volume 38 (1988), pp. 2409-2422 | DOI

[88] Mathias Van Regemortel; Wim Casteels; Iacopo Carusotto; Michiel Wouters Spontaneous Beliaev–Landau scattering out of equilibrium, Phys. Rev. A, Volume 96 (2017) no. 5, 053854 | MR | DOI

[89] Anatoli Polkovnikov Quantum corrections to the dynamics of interacting bosons: beyond the truncated Wigner approximation, Phys. Rev. A, Volume 68 (2003) no. 5, 053604 | DOI

[90] Iacopo Carusotto; Cristiano Ciuti Probing microcavity polariton superfluidity through resonant Rayleigh scattering, Phys. Rev. Lett., Volume 93 (2004), 166401 | DOI

[91] Alberto Amo; Jerome Lefrere; Simon Pigeon; Claire Adrados; Cristiano Ciuti; Iacopo Carusotto; Romuald Houdre; Élisabeth Giacobino; Alberto Bramati Superfluidity of polaritons in semiconductor microcavities, Nature Phys., Volume 5 (2009) no. 11, pp. 805-810 | DOI

[92] Ferdinand Claude; Maxime J. Jacquet; Romain Usciati; Iacopo Carusotto; Élisabeth Giacobino; Alberto Bramati; Quentin Glorieux High-resolution coherent probe spectroscopy of a polariton quantum fluid, Phys. Rev. Lett., Volume 129 (2022) no. 10, 103601 | DOI

[93] Xavier Busch; Iacopo Carusotto; Renaud Parentani Spectrum and entanglement of phonons in quantum fluids of light, Phys. Rev. A, Volume 89 (2014) no. 4, 043819 | DOI

[94] Thomas Boulier; Emiliano Cancellieri; Nicolas D. Sangouard; Romain Hivet; Quentin Glorieux; Élisabeth Giacobino; Alberto Bramati Lattices of quantized vortices in polariton superfluids, C. R. Phys., Volume 17 (2016) no. 8, pp. 893-907 | DOI

[95] Carlos Barcelo; Stefano Liberati; Matt Visser Analogue gravity, Living Rev. Relativ., Volume 14 (2011), pp. 1-159 | Zbl

[96] Dario Gerace; Iacopo Carusotto Analog Hawking radiation from an acoustic black hole in a flowing polariton superfluid, Phys. Rev. B, Volume 86 (2012) no. 14, 144505 | DOI

[97] Hai Son Nguyen; Dario Gerace; Iacopo Carusotto; Daniele Sanvitto; Elisabeth Galopin; Aristide Lemaître; Isabelle Sagnes; Jacqueline Bloch; Alberto Amo Acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons, Phys. Rev. Lett., Volume 114 (2015) no. 3, 036402 | DOI

[98] Kévin Falque; Adrià Delhom; Quentin Glorieux; Élisabeth Giacobino; Alberto Bramati; Maxime J. Jacquet Polariton fluids as quantum field theory simulators on tailored curved spacetimes, Phys. Rev. Lett., Volume 135 (2025), 023401, 7 pages | DOI | MR

[99] Juan Ramón Muñoz de Nova; Katrine Golubkov; Victor I. Kolobov; Jeff Steinhauer Observation of thermal Hawking radiation and its temperature in an analogue black hole, Nature, Volume 569 (2019) no. 7758, pp. 688-691 | DOI

[100] Stefano Finazzi; Iacopo Carusotto Entangled phonons in atomic Bose–Einstein condensates, Phys. Rev. A, Volume 90 (2014) no. 3, 033607 | DOI

[101] D. Tong Lectures on the quantum Hall effect (2016) | arXiv

[102] Tomoki Ozawa; Iacopo Carusotto Anomalous and quantum Hall effects in lossy photonic lattices, Phys. Rev. Lett., Volume 112 (2014) no. 13, 133902 | DOI

[103] Tomoki Ozawa; Hannah M. Price; Alberto Amo; Nathan Goldman; Mohammad Hafezi; Ling Lu; Mikael C. Rechtsman; David I. Schuster; Jonathan Simon; Oded Zilberberg; Iacopo Carusotto Topological photonics, Rev. Mod. Phys., Volume 91 (2019) no. 1, 015006 | DOI | MR

[104] Alexandre Chénier; Bosco d’Aligny; Félix Pellerin; Paul-Édouard Blanchard; Tomoki Ozawa; Iacopo Carusotto; Philippe St-Jean Quantized Hall drift in a frequency-encoded photonic Chern insulator (2024) | arXiv

[105] Iacopo Carusotto; Germain Rousseaux The Cerenkov effect revisited: from swimming ducks to zero modes in gravitational analogues, Analogue gravity phenomenology: analogue spacetimes and horizons, from theory to experiment (Lecture Notes in Physics), Springer, 2013 no. 870, pp. 109-144 | DOI | Zbl

[106] Ferdinand Claude; Maxime J. Jacquet; Quentin Glorieux; Michiel Wouters; Élisabeth Giacobino; Iacopo Carusotto; Alberto Bramati Observation of the diffusive Nambu–Goldstone mode of a non-equilibrium phase transition, Nat. Phys., Volume 21 (2025), pp. 924-930 | DOI

[107] Kerson Huang Statistical mechanics, John Wiley & Sons, 1987, xiv+498 pages

[108] Maxime Richard; J. Kasprzak; R. Romestain; R. Andre; L. S. Dang Spontaneous coherent phase transition of polaritons in CdTe microcavities, Phys. Rev. Lett., Volume 94 (2005) no. 18, 187401 | DOI

[109] Michiel Wouters; Iacopo Carusotto; Cristiano Ciuti Spatial and spectral shape of inhomogeneous nonequilibrium exciton-polariton condensates, Phys. Rev. B, Volume 77 (2008), 115340 | DOI

[110] E. Wertz; L. Ferrier; D. D. Solnyshkov; R. Johne; Daniele Sanvitto; Aristide Lemaître; Isabelle Sagnes; R. Grousson; Alexey V. Kavokin; Pascale Senellart; Guillaume Malpuech; Jacqueline Bloch Spontaneous formation and optical manipulation of extended polariton condensates, Nat. Phys., Volume 6 (2010) no. 11, pp. 860-864 | DOI

[111] Alberto Amo; Jacqueline Bloch Exciton-polaritons in lattices: a non-linear photonic simulator, C. R. Phys., Volume 17 (2016) no. 8, pp. 934-945 | DOI

[112] D. Tanese; H. Flayac; D. D. Solnyshkov; Alberto Amo; Aristide Lemaître; Elisabeth Galopin; R. Braive; Pascale Senellart; Isabelle Sagnes; Guillaume Malpuech et al. Polariton condensation in solitonic gap states in a one-dimensional periodic potential, Nat. Commun., Volume 4 (2013) no. 1, 1749 | DOI

[113] Florent Baboux; Daniele De Bernardis; Valentin Goblot; V. N. Gladilin; Carmen Gomez; Elisabeth Galopin; Luc Le Gratiet; Aristide Lemaître; Isabelle Sagnes; Iacopo Carusotto; Michiel Wouters; Alberto Amo; Jacqueline Bloch Unstable and stable regimes of polariton condensation, Optica, Volume 5 (2018) no. 10, pp. 1163-1170 | DOI

[114] Davide Nigro; Dimitrios Trypogeorgos; Antonio Gianfrate; Daniele Sanvitto; Iacopo Carusotto; Dario Gerace Supersolidity of polariton condensates in photonic crystal waveguides, Phys. Rev. Lett., Volume 134 (2025) no. 5, 056002 | DOI

[115] Dimitrios Trypogeorgos; Antonio Gianfrate; Manuele Landini; Davide Nigro; Dario Gerace; Iacopo Carusotto; Fabrizio Riminucci; Kirk W. Baldwin; Loren N. Pfeiffer; Giovanni I. Martone; Milena De Giorgi; Dario Ballarini; Daniele Sanvitto Emerging supersolidity in photonic-crystal polariton condensates, Nature, Volume 639 (2025), pp. 337-341 | DOI

[116] Alessio Recati; Sandro Stringari Supersolidity in ultracold dipolar gases, Nat. Rev. Phys., Volume 5 (2023) no. 12, pp. 735-743 | DOI

[117] Scott A. Diddams; Kerry Vahala; Thomas Udem Optical frequency combs: coherently uniting the electromagnetic spectrum, Science, Volume 369 (2020), eaay3676, 12 pages | DOI

[118] Lin Chang; Songtao Liu; John E. Bowers Integrated optical frequency comb technologies, Nature Photon., Volume 16 (2022) no. 2, pp. 95-108 | DOI

[119] Daniele Bajoni; Pascale Senellart; Aristide Lemaître; Jacqueline Bloch Photon lasing in GaAs microcavity: similarities with a polariton condensate, Phys. Rev. B, Volume 76 (2007), 201305 | DOI

[120] Yongbao Sun; Patrick Wen; Yoseob Yoon; Gangqiang Liu; Mark Steger; Loren N. Pfeiffer; Ken West; David W. Snoke; Keith A. Nelson Bose–Einstein condensation of long-lifetime polaritons in thermal equilibrium, Phys. Rev. Lett., Volume 118 (2017) no. 1, 016602 | DOI

[121] Alessio Chiocchetta; Andrea Gambassi; Iacopo Carusotto Laser operation and Bose–Einstein condensation: analogies and differences, Universal themes of Bose–Einstein condensation, Cambridge University Press, 2017, pp. 409-423 | DOI

[122] Claude Cohen-Tannoudji Lectures at Collège de France (1999-2000) https://www.phys.ens.fr/...

[123] Sergio M. Rezende Fundamentals of magnonics, Lecture Notes in Physics, 969, Springer, 2020, xvii+358 pages | DOI

[124] J. D. Gunton; M. J. Buckingham Condensation of the ideal Bose gas as a cooperative transition, Phys. Rev., Volume 166 (1968), pp. 152-158 | DOI

[125] Michiel Wouters; Iacopo Carusotto Goldstone mode of optical parametric oscillators in planar semiconductor microcavities in the strong-coupling regime, Phys. Rev. A, Volume 76 (2007), 043807 | DOI

[126] R. Graham; H. Haken Laserlight–first example of a second-order phase transition far away from thermal equilibrium, Z. Phys. A, Hadrons Nuclei, Volume 237 (1970), pp. 31-46 | DOI

[127] Michiel Wouters; Iacopo Carusotto Absence of long-range coherence in the parametric emission of photonic wires, Phys. Rev. B, Volume 74 (2006), 245316, 6 pages | DOI

[128] Petter Minnhagen The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films, Rev. Mod. Phys., Volume 59 (1987), pp. 1001-1066 | DOI

[129] Zoran Hadzibabic; Jean Dalibard Two-dimensional Bose fluids: an atomic physics perspective, Riv. Nuovo Cim., Volume 34 (2011) no. 6, pp. 389-434 | DOI

[130] Ehud Altman; Lukas M. Sieberer; Leiming Chen; Sebastian Diehl; John Toner Two-dimensional superfluidity of exciton polaritons requires strong anisotropy, Phys. Rev. X, Volume 5 (2015) no. 1, 011017 | DOI

[131] Lukas M. Sieberer; Michael Buchhold; Sebastian Diehl Keldysh field theory for driven open quantum systems, Rep. Prog. Phys., Volume 79 (2016) no. 9, 096001 | DOI

[132] A. Zamora; Lukas M. Sieberer; K. Dunnett; Sebastian Diehl; M. H. Szymańska Tuning across universalities with a driven open condensate, Phys. Rev. X, Volume 7 (2017) no. 4, 041006 | DOI

[133] Quentin Fontaine; Davide Squizzato; Florent Baboux; Ivan Amelio; Aristide Lemaître; Martina Morassi; Isabelle Sagnes; Luc Le Gratiet; Abdelmounaim Harouri; Michiel Wouters; Iacopo Carusotto; Alberto Amo; Maxime Richard; Anna Minguzzi; Léonie Canet; Sylvain Ravets; Jacqueline Bloch Kardar–Parisi–Zhang universality in a one-dimensional polariton condensate, Nature, Volume 608 (2022) no. 7924, pp. 687-691 | DOI

[134] Tomoki Ozawa; Hannah M. Price; Nathan Goldman; Oded Zilberberg; Iacopo Carusotto Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics, Phys. Rev. A, Volume 93 (2016) no. 4, 043827 | DOI

[135] Max Ehrhardt; Sebastian Weidemann; Lukas J. Maczewsky; Matthias Heinrich; Alexander Szameit A perspective on synthetic dimensions in photonics, Laser Photonics Rev., Volume 17 (2023) no. 7, 2200518 | DOI

[136] Luqi Yuan; Qian Lin; Meng Xiao; Shanhui Fan Synthetic dimension in photonics, Optica, Volume 5 (2018) no. 11, pp. 1396-1405 | DOI

[137] Ina Heckelmann; Mathieu Bertrand; Alexander Dikopoltsev; Mattias Beck; Giacomo Scalari; Jérôme Faist Quantum walk comb in a fast gain laser, Science, Volume 382 (2023) no. 6669, pp. 434-438 | DOI

[138] Alexander Dikopoltsev; Ina Heckelmann; Mathieu Bertrand; Mattias Beck; Giacomo Scalari; Oded Zilberberg; Jérôme Faist Collective quench dynamics of active photonic lattices in synthetic dimensions, Nat. Phys., Volume 21 (2025), pp. 1134-1140 | DOI

[139] Christopher J. Flower; Mahmoud Jalali Mehrabad; Lida Xu; Gregory Moille; Daniel G. Suarez-Forero; Oğulcan Örsel; Gaurav Bahl; Yanne Chembo; Kartik Srinivasan; Sunil Mittal et al. Observation of topological frequency combs, Science, Volume 384 (2024) no. 6702, pp. 1356-1361 | DOI

[140] Kazumasa A. Takeuchi An appetizer to modern developments on the Kardar–Parisi–Zhang universality class, Phys. A: Stat. Mech. Appl., Volume 504 (2018), pp. 77-105 (Lecture Notes of the 14th International Summer School on Fundamental Problems in Statistical Physics) | DOI | MR | Zbl

[141] Kay Jörg Wiese On the perturbation expansion of the KPZ equation, J. Stat. Phys., Volume 93 (1998) no. 1, pp. 143-154 | DOI | MR | Zbl

[142] Enzo Marinari; Andrea Pagnani; Giorgio Parisi Critical exponents of the KPZ equation via multi-surface coding numerical simulations, J. Phys. A. Math. Gen., Volume 33 (2000) no. 46, 8181 | MR | Zbl | DOI

[143] Léonie Canet; Hugues Chaté; Bertrand Delamotte; Nicolás Wschebor Nonperturbative renormalization group for the Kardar–Parisi–Zhang equation, Phys. Rev. Lett., Volume 104 (2010), 150601 | DOI

[144] A. Imamoğlu; H. Schmidt; G. Woods; M. Deutsch Strongly interacting photons in a nonlinear cavity, Phys. Rev. Lett., Volume 79 (1997) no. 8, pp. 1467-1470 | DOI

[145] Iacopo Carusotto; Dario Gerace; H. E. Tureci; Simone De Liberato; Cristiano Ciuti; A. Imamoğlu Fermionized photons in an array of driven dissipative nonlinear cavities, Phys. Rev. Lett., Volume 103 (2009), 033601 | DOI

[146] J. Robert Johansson; Paul D. Nation; Franco Nori QuTiP: an open-source Python framework for the dynamics of open quantum systems, Comput. Phys. Commun., Volume 183 (2012) no. 8, pp. 1760-1772 | DOI

[147] Yvan Castin Simple theoretical tools for low dimension Bose gases, J. Phy. IV France, Volume 116 (2004), pp. 89-132 | DOI

[148] Claude Cohen-Tannoudji; Jacques Dupont-Roc; Gilbert Grynberg Atom-photon interactions: basic processes and applications, Physics Textbook, John Wiley & Sons, 1998, xxii+656 pages | DOI

[149] G. P. Fedorov; S. V. Remizov; D. S. Shapiro; W. V. Pogosov; E. Egorova; I. Tsitsilin; M. Andronik; A. A. Dobronosova; I. A. Rodionov; O. V. Astafiev; A. V. Ustinov Photon transport in a Bose–Hubbard chain of superconducting artificial atoms, Phys. Rev. Lett., Volume 126 (2021), 180503 | DOI

[150] Rifat Onur Umucalılar; Iacopo Carusotto Fractional quantum Hall states of photons in an array of dissipative coupled cavities, Phys. Rev. Lett., Volume 108 (2012), 206809 | DOI

[151] Rifat Onur Umucalılar; Iacopo Carusotto Many-body braiding phases in a rotating strongly correlated photon gas, Phys. Lett. A, Volume 377 (2013) no. 34–36, pp. 2074-2078 | DOI | MR | Zbl

[152] Logan W. Clark; Nathan Schine; Claire Baum; Ningyuan Jia; Jonathan Simon Observation of Laughlin states made of light, Nature, Volume 582 (2020) no. 7810, pp. 41-45 | DOI

[153] Alexey V. Gorshkov; Johannes Otterbach; Michael Fleischhauer; Thomas Pohl; Mikhail D. Lukin Photon-photon interactions via Rydberg blockade, Phys. Rev. Lett., Volume 107 (2011), 133602 | DOI

[154] Nathan Schine; Albert Ryou; Andrey Gromov; Ariel Sommer; Jonathan Simon Synthetic Landau levels for photons, Nature, Volume 534 (2016) no. 7609, pp. 671-675 | DOI

[155] Ady Stern Anyons and the quantum Hall effect. A pedagogical review, Ann. Phys., Volume 323 (2008) no. 1, pp. 204-249 | DOI | MR | Zbl

[156] B. Paredes; P. Fedichev; J. I. Cirac; Peter Zoller 1 2-anyons in small atomic Bose–Einstein condensates, Phys. Rev. Lett., Volume 87 (2001) no. 1, 010402 | DOI

[157] Fabian Grusdt; Norman Y. Yao; D. Abanin; Michael Fleischhauer; E. Demler Interferometric measurements of many-body topological invariants using mobile impurities, Nat. Commun., Volume 7 (2016) no. 1, 11994 | DOI

[158] A. Muñoz de las Heras; Elia Macaluso; Iacopo Carusotto Anyonic molecules in atomic fractional quantum Hall liquids: a quantitative probe of fractional charge and anyonic statistics, Phys. Rev. X, Volume 10 (2020) no. 4, 041058 | DOI

[159] Elia Macaluso; Iacopo Carusotto Hard-wall confinement of a fractional quantum Hall liquid, Phys. Rev. A, Volume 96 (2017) no. 4, 043607 | DOI

[160] Alberto Nardin; Daniele De Bernardis; Rifat Onur Umucalılar; Leonardo Mazza; Matteo Rizzi; Iacopo Carusotto Quantum nonlinear optics on the edge of a few-particle fractional quantum Hall fluid in a small lattice, Phys. Rev. Lett., Volume 133 (2024) no. 18, 183401 | DOI

[161] F. Binanti; Nathan Goldman; Cecile Repellin Spectroscopy of edge and bulk collective modes in fractional Chern insulators, Phys. Rev. Res., Volume 6 (2024), L012054, 6 pages | DOI

[162] Alberto Biella; Florent Storme; José Lebreuilly; Davide Rossini; Rosario Fazio; Iacopo Carusotto; Cristiano Ciuti Phase diagram of incoherently driven strongly correlated photonic lattices, Phys. Rev. A, Volume 96 (2017) no. 2, 023839 | DOI

[163] Rifat Onur Umucalılar; Iacopo Carusotto Generation and spectroscopic signatures of a fractional quantum Hall liquid of photons in an incoherently pumped optical cavity, Phys. Rev. A, Volume 96 (2017) no. 5, 053808 | DOI

[164] Rifat Onur Umucalılar; Jonathan Simon; Iacopo Carusotto Autonomous stabilization of photonic Laughlin states through angular momentum potentials, Phys. Rev. A, Volume 104 (2021) no. 2, 023704 | DOI | MR

[165] Pavel Kurilovich; Vladislav D. Kurilovich; José Lebreuilly; Steven M. Girvin Stabilizing the Laughlin state of light: dynamics of hole fractionalization, SciPost Phys., Volume 13 (2022) no. 5, 107, 34 pages | MR | DOI

[166] Mohammad Hafezi; P. Adhikari; J. M. Taylor Chemical potential for light by parametric coupling, Phys. Rev. B, Volume 92 (2015), 174305 | DOI

[167] José Lebreuilly; Alberto Biella; Florent Storme; Davide Rossini; Rosario Fazio; Cristiano Ciuti; Iacopo Carusotto Stabilizing strongly correlated photon fluids with non-Markovian reservoirs, Phys. Rev. A, Volume 96 (2017) no. 3, 033828 | DOI

[168] Maxime J. Jacquet; Luca Giacomelli; Quentin Valnais; Malo Joly; Ferdinand Claude; Élisabeth Giacobino; Quentin Glorieux; Iacopo Carusotto; Alberto Bramati Quantum vacuum excitation of a quasinormal mode in an analog model of black hole spacetime, Phys. Rev. Lett., Volume 130 (2023) no. 11, 111501 | DOI

[169] Tomoki Ozawa; Hannah M. Price Topological quantum matter in synthetic dimensions, Nat. Rev. Phys., Volume 1 (2019) no. 5, pp. 349-357 | DOI

[170] Chetan Nayak; Steven H. Simon; Ady Stern; Michael Freedman; Sankar Das Sarma Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys., Volume 80 (2008), pp. 1083-1159 | DOI | MR | Zbl

[171] Takuto Tsuno; Shintaro Taie; Yosuke Takasu; Kazuya Yamashita; Tomoki Ozawa; Yoshiro Takahashi Gain engineering and topological atom laser in synthetic dimensions (2024) | arXiv

Cité par Sources :

Commentaires - Politique