Comptes Rendus
Article de recherche
Stellar intensity interferometry in the photon-counting regime
[Interférométrie d’intensité stellaire en comptage de photons]
Comptes Rendus. Physique, Volume 26 (2025), pp. 659-679

Cet article fait partie du numéro thématique Mesures quantiques coordonné par David Clément et al..  

Stellar intensity interferometry consists in measuring the correlation of the light intensity fluctuations at two telescopes observing the same star. The amplitude of the correlation is directly related to the luminosity distribution of the star, which would be unresolved by a single telescope. This technique is based on the well-known Hanbury Brown and Twiss effect. After its discovery in the 1950s, it was used in astronomy until the 1970s, and then replaced by direct (“amplitude”) interferometry, which is much more sensitive, but also much more demanding. However, in recent years, intensity interferometry has undergone a revival. In this article, we present a summary of the state of the art, and we discuss in detail the signal-to-noise ratio of intensity interferometry in the framework of photon-counting detection.

L’interférométrie d’intensité stellaire consiste à mesurer la corrélation entre les fluctuations d’intensité de la lumière captée par deux télescopes observant la même étoile. L’amplitude de la corrélation est directement liée à la taille de l’étoile, qui ne serait pas résolue par un seul télescope. Cette technique est basée sur le célèbre effet Hanbury Brown et Twiss. Après sa découverte dans les années 1950, elle a été utilisée en astronomie jusque dans les années 1970, puis remplacée par l’interférométrie directe (ou d’amplitude), qui est beaucoup plus sensible, mais aussi beaucoup plus exigeante techniquement. Cependant, depuis quelques années, l’interférométrie d’intensité connaît un renouveau. Dans cet article, nous présentons un résumé de l’état de l’art et nous discutons en détail du rapport signal à bruit de l’interférométrie d’intensité dans le cadre de détecteurs en comptage de photons.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.259
Keywords: Stellar interferometry, Hanbury Brown and Twiss effect, single-photon detectors
Mots-clés : Interférométrie stellaire, effet Hanbury Brown et Twiss, détecteurs de photons uniques

William Guerin 1 ; Mathilde Hugbart 1 ; Sarah Tolila 1 ; Nolan Matthews 1, 2 ; Olivier Lai 3 ; Jean-Pierre Rivet 3 ; Guillaume Labeyrie 1 ; Robin Kaiser 1

1 Université Côte d’Azur, CNRS, Institut de Physique de Nice, France
2 Space Dynamics Laboratory, Utah State University, Logan, UT, 84341, USA
3 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2025__26_G1_659_0,
     author = {William Guerin and Mathilde Hugbart and Sarah Tolila and Nolan Matthews and Olivier Lai and Jean-Pierre Rivet and Guillaume Labeyrie and Robin Kaiser},
     title = {Stellar intensity interferometry in the photon-counting regime},
     journal = {Comptes Rendus. Physique},
     pages = {659--679},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {26},
     doi = {10.5802/crphys.259},
     language = {en},
}
TY  - JOUR
AU  - William Guerin
AU  - Mathilde Hugbart
AU  - Sarah Tolila
AU  - Nolan Matthews
AU  - Olivier Lai
AU  - Jean-Pierre Rivet
AU  - Guillaume Labeyrie
AU  - Robin Kaiser
TI  - Stellar intensity interferometry in the photon-counting regime
JO  - Comptes Rendus. Physique
PY  - 2025
SP  - 659
EP  - 679
VL  - 26
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.259
LA  - en
ID  - CRPHYS_2025__26_G1_659_0
ER  - 
%0 Journal Article
%A William Guerin
%A Mathilde Hugbart
%A Sarah Tolila
%A Nolan Matthews
%A Olivier Lai
%A Jean-Pierre Rivet
%A Guillaume Labeyrie
%A Robin Kaiser
%T Stellar intensity interferometry in the photon-counting regime
%J Comptes Rendus. Physique
%D 2025
%P 659-679
%V 26
%I Académie des sciences, Paris
%R 10.5802/crphys.259
%G en
%F CRPHYS_2025__26_G1_659_0
William Guerin; Mathilde Hugbart; Sarah Tolila; Nolan Matthews; Olivier Lai; Jean-Pierre Rivet; Guillaume Labeyrie; Robin Kaiser. Stellar intensity interferometry in the photon-counting regime. Comptes Rendus. Physique, Volume 26 (2025), pp. 659-679. doi: 10.5802/crphys.259

[1] R. Hanbury Brown; R. Q. Twiss Correlation between photons in two coherent beams of light, Nature, Volume 177 (1956), pp. 27-29 | DOI

[2] R. Hanbury Brown; R. Q. Twiss A test of a new type of stellar interferometer on Sirius, Nature, Volume 178 (1956), pp. 1046-1048 | DOI

[3] Roy J. Glauber Photon correlations, Phys. Rev. Lett., Volume 10 (1963), pp. 84-86 | DOI

[4] Roy J. Glauber The quantum theory of optical coherence, Phys. Rev., Volume 130 (1963), 2529

[5] Roy J. Glauber Nobel Lecture: One hundred years of light quanta, Rev. Mod. Phys., Volume 78 (2006) no. 4, pp. 1267-1278 | DOI

[6] A. J. F. Siegert On the fluctuations in signals returned by many independently moving scatterers, Reports, 465, Radiation Laboratory, Massachusetts Insitute of Technology, 1943, 28 pages

[7] P. Lassègues; M. A. F. Biscassi; M. Morisse et al. Field and intensity correlations: the Siegert relation from stars to quantum emitters, Eur. Phys. J. D, Atomic Mol. Opt. Plasma Phys., Volume 76 (2022) no. 12, 246 | DOI

[8] Leonard Mandel; Emil Wolf Optical coherence and quantum optics, Cambridge University Press, 1995, xxvi+1166 pages | DOI

[9] Indianara Silva; Olival Freire The concept of the photon in question: the controversy surrounding the HBT effect circa 1956–1958, Hist. Stud. Nat. Sci., Volume 43 (2012) no. 4, pp. 453-491 | DOI

[10] E. M. Purcell The question of correlation between photons in coherent light rays, Nature, Volume 178 (1956), pp. 1449-1450 | DOI

[11] R. Hanbury Brown; R. Q. Twiss Interferometry of the intensity fluctuations in light. I. Basic theory: the correlation between photons in coherent beams of radiation, Proc. R. Soc. Lond., Ser. A, Volume 242 (1957), pp. 300-324 | DOI

[12] F. D. Kahn On photon coincidences and Hanbury Brown’s interferometer, Opt. Acta, Volume 5 (1958) no. 3-4, pp. 93-100 | DOI

[13] R. Q. Twiss; A. G. Little; R. Hanbury Brown Correlation between photons, in coherent beams of light, detected by a coincidence counting technique, Nature, Volume 180 (1957), pp. 324-326 | DOI

[14] G. A. Rebka; R. V. Pound Time-correlated photons, Nature, Volume 180 (1957), pp. 1035-1036 | DOI

[15] U. Fano Quantum theory of interference effects in the mixing of light from phase-independent sources, Am. J. Phys., Volume 29 (1961) no. 8, pp. 539-545 | DOI

[16] R. Hanbury Brown; J. Davis; L. R. Allen The angular diameters of 32 stars, Mon. Not. Roy. Astron. Soc., Volume 167 (1974) no. 1, pp. 121-136 | DOI

[17] A. Labeyrie Interference fringes obtained on Vega with two optical telescopes, Astrophys. J., Volume 196 (1975), p. L71-L75 | DOI

[18] Dainis Dravins; Stephan LeBohec; Hannes Jensen; Paul D. Nuñez Optical intensity interferometry with the Cherenkov Telescope Array, Astropart. Phys., Volume 43 (2013), pp. 331-347 | DOI

[19] Tina Wentz; Prasenjit Saha Feasibility of observing Hanbury Brown and Twiss phase, Mon. Not. Roy. Astron. Soc., Volume 446 (2014) no. 2, pp. 2065-2072 | DOI

[20] Paul D. Nuñez; A. Domiciano de Souza Capabilities of future intensity interferometers for observing fast-rotating stars: imaging with two- and three-telescope correlations, Mon. Not. Roy. Astron. Soc., Volume 453 (2015) no. 2, pp. 1999-2005 | DOI

[21] Andreas Zmija; Naomi Vogel; Frederik Wohlleben; Gisela Anton; Adrian Zink; Stefan Funk First intensity interferometry measurements with the H.E.S.S. telescopes, Mon. Not. Roy. Astron. Soc., Volume 527 (2023) no. 4, pp. 12243-12252 | DOI

[22] Naomi Vogel; Andreas Zmija; Frederik Wohlleben; Gisela Anton; Alison Mitchell; Adrian Zink; Stefan Funk Simultaneous two-colour intensity interferometry with H.E.S.S., Mon. Not. Roy. Astron. Soc., Volume 537 (2024) no. 3, pp. 2334-2341 | DOI

[23] V. A. Acciari; M. I. Bernardos; E. Colombo et al. Optical intensity interferometry observations using the MAGIC Imaging Atmospheric Cherenkov Telescopes, Mon. Not. Roy. Astron. Soc., Volume 491 (2019) no. 2, pp. 1540-1547 | DOI

[24] S. Abe; J. Abhir; V. A. Acciari; A. Aguasca-Cabot et al. Performance and first measurements of the MAGIC stellar intensity interferometer, Mon. Not. Roy. Astron. Soc., Volume 529 (2024) no. 4, pp. 4387-4404 | DOI

[25] A. U. Abeysekara; W. Benbow; A. Brill et al. Demonstration of stellar intensity interferometry with the four VERITAS telescopes, Nat. Astron., Volume 4 (2020) no. 12, pp. 1164-1169 | DOI

[26] A. Acharyya; J. P. Aufdenberg; P. Bangale et al. An angular diameter measurement of β UMa via stellar intensity interferometry with the VERITAS observatory, Astrophys. J., Volume 966 (2024) no. 1, 28, 13 pages | DOI

[27] R. Hanbury Brown Stellar interferometer at Narrabri observatory, Nature, Volume 218 (1968), pp. 637-641

[28] J. Rou; P. D. Nuñez; D. Kieda; S. LeBohec Monte Carlo simulation of stellar intensity interferometry, Mon. Not. Roy. Astron. Soc., Volume 430 (2013) no. 4, pp. 3187-3195 | DOI

[29] Jean-Pierre Rivet; Farrokh Vakili; Olivier Lai; David Vernet; Mathilde Fouché; William Guerin; Guillaume Labeyrie; R. Kaiser Optical long baseline intensity interferometry: prospects for stellar physics, Exp. Astron., Volume 46 (2018), pp. 531-542 | DOI

[30] Luca Zampieri; Giampiero Naletto; Aleksandr Burtovoi; Michele Fiori; Cesare Barbieri Stellar intensity interferometry of Vega in photon counting mode, Mon. Not. Roy. Astron. Soc., Volume 506 (2021) no. 2, pp. 1585-1594 | DOI

[31] E. P. Horch; S. A. Weiss; P. M. Klaucke; R. A. Pellegrino; J. D. Rupert Observations with the Southern Connecticut Stellar Interferometer. I. Instrument description and first results, Astron. J., Volume 163 (2022) no. 2, 92, 16 pages | DOI

[32] Verena G. Leopold; Sebastian Karl; Jean-Pierre Rivet; Joachim von Zanthier On-sky demonstration of an ultra-fast intensity interferometry instrument utilising hybrid single photon counting detectors, J. Astron. Telesc. Instrum. Syst., Volume 11 (2025) no. 3, 035005, 14 pages | DOI

[33] Roland Walter; Edoardo Charbon; Domenico Della Volpe et al. Resolving accretion disks with quantum optics, Proceedings of the 38th International Cosmic Ray Conference, PoS, 2023, 1491, 8 pages | DOI

[34] Thomas J. Mozdzen; Richard M. Scott; Philip D. Mauskopf; Ricardo R. Rodriguez Intensity interferometer results on Sirius with 0.25 m telescopes, Mon. Not. Roy. Astron. Soc., Volume 537 (2025) no. 3, pp. 2527-2534 | DOI

[35] Paul D. Nuñez; Richard Holmes; David Kieda; Stephan LeBohec High angular resolution imaging with stellar intensity interferometry using air Cherenkov telescope arrays, Mon. Not. Roy. Astron. Soc., Volume 419 (2012) no. 1, pp. 172-183 | DOI

[36] Paul D. Nuñez; Richard Holmes; David Kieda; Janvida Rou; Stephan LeBohec Imaging submilliarcsecond stellar features with intensity interferometry using air Cherenkov telescope arrays: imaging submilliarcsecond stellar features, Mon. Not. Roy. Astron. Soc., Volume 424 (2012) no. 2, pp. 1006-1011 | DOI

[37] Dainis Dravins; T. Lagadec; P. D. Nuñez Long-baseline optical intensity interferometry. Laboratory demonstration of diffraction-limited imaging, Astron. Astrophys., Volume 580 (2015), A99, 13 pages

[38] Pierre-Marie Gori; Farrokh Vakili; Jean-Pierre Rivet et al. I3T: Intensity Interferometry Imaging Telescope, Mon. Not. Roy. Astron. Soc., Volume 505 (2021) no. 2, pp. 2328-2335 | DOI

[39] A. Dussaux; T. Passerat de Silans; William Guerin; O. Alibart; S. Tanzilli; Farrokh Vakili; R. Kaiser Temporal intensity correlation of light scattered by a hot atomic vapor, Phys. Rev. A, Volume 93 (2016), 043826 | DOI

[40] William Guerin; A. Dussaux; Mathilde Fouché; Guillaume Labeyrie; Jean-Pierre Rivet; David Vernet; Farrokh Vakili; R. Kaiser Temporal intensity interferometry: photon bunching in three bright stars, Mon. Not. Roy. Astron. Soc., Volume 472 (2017), pp. 4126-4132 | DOI

[41] William Guerin; Jean-Pierre Rivet; Mathilde Fouché; Guillaume Labeyrie; David Vernet; Farrokh Vakili; R. Kaiser Spatial intensity interferometry on three bright stars, Mon. Not. Roy. Astron. Soc., Volume 480 (2018) no. 4, pp. 245-250 | DOI

[42] P. K. Tan; G. H. Yeo; H. S. Poh; A. H. Chan; Christian Kurtsiefer Measuring temporal photon bunching in backbody radiation, Astrophys. J., Volume 789 (2014), L10, 5 pages

[43] Jean-Pierre Rivet; A. Siciak; E. S. G. de Almeida et al. Intensity interferometry of P Cygni in the Hα emission line: towards distance calibration of LBV supergiant stars, Mon. Not. Roy. Astron. Soc., Volume 494 (2020), pp. 218-227 | DOI

[44] E. S. G. de Almeida; Mathilde Hugbart; A. Domiciano de Souza et al. Combined spectroscopy and intensity interferometry to determine the distances of the blue supergiants P Cygni and Rigel, Mon. Not. Roy. Astron. Soc., Volume 515 (2022) no. 1, pp. 1-12 | DOI

[45] Nolan Matthews; Jean-Pierre Rivet; David Vernet et al. Intensity interferometry observations of the Hα envelope of γCas with MéO and a portable telescope, Astron. J., Volume 165 (2023), 117, 6 pages | DOI

[46] Rolf-Peter Kudritzki; J. Puls; D. J. Lennon; K. A. Venn; J. Reetz; F. Najarro; J. K. McCarthy; A. Herrero The wind momentum-luminosity relationship of galactic A- and B-supergiants, Astron. Astrophys., Volume 350 (1999), pp. 970-984 | DOI

[47] William Guerin; Jean-Pierre Rivet; Mathilde Hugbart et al. Revival of intensity interferometry with modern photonic technologies, Proceedings of the annual meeting of the French Society of Astronomy & Astrophysics (A. Siebert; K. Baillié; E. Lagadec; N. Lagarde; J. Malzac; J.-B. Marquette; M. N’Diaye; J. Richard; O. Venot, eds.), Société Française d’Astronomie et d’Astrophysique (SF2A), 2021, 334 pages

[48] N. Matthews; Jean-Pierre Rivet; Mathilde Hugbart et al. Intensity interferometry at Calern and beyond: progress report, Optical and infrared interferometry and imaging VIII (Proceedings of SPIE), SPIE, 2022 no. 12183, 121830G, 13 pages | DOI

[49] R. Hanbury Brown; R. Q. Twiss Interferometry of the intensity fluctuations in light III. Applications to astronomy, Proc. R. Soc. Lond., Ser. A, Volume 248 (1958), pp. 199-221

[50] Sebastian Karl; Andreas Zmija; Stefan Richter et al. Comparing different approaches for stellar intensity interferometry, Mon. Not. Roy. Astron. Soc., Volume 512 (2022) no. 2, pp. 1722-1729 | DOI

[51] Neal Dalal; Marios Galanis; Charles Gammie; Samuel E. Gralla; Norman Murray Probing H 0 and resolving AGN disks with ultrafast photon counters, Phys. Rev. D, Volume 109 (2024) no. 12, 123029 | DOI

[52] David B. Kieda Performance of the upgraded VERITAS Stellar Intensity Interferometer (VSII), Optical and infrared interferometry and imaging VIII (Antoine Mérand; Stephanie Sallum; Joel Sanchez-Bermudez, eds.) (Proceedings of SPIE), SPIE, 2022 no. 12183, 121830D, 15 pages | DOI

[53] Christian Kurtsiefer; Patrick Zarda; Sonja Mayer; Harald Weinfurter The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks?, J. Mod. Opt., Volume 48 (2001) no. 13, pp. 2039-2047 | DOI

[54] S. Trippe; J.-Y. Kim; B. Lee; C. Choi; J. Oh; T. Lee; S.-C. Yoon; M. Im; Y.-S. Park Optical multi-channel intensity interferometry — or: how to resolve O-stars in the Magellanic clouds, J. Korean Astron. Soc., Volume 47 (2014), pp. 235-253 | DOI

[55] Olivier Lai; William Guerin; Farrokh Vakili et al. Intensity interferometry revival on the Côte d’Azur, Optical and infrared interferometry and imaging VI (Michelle J. Creech-Eakman; Peter G. Tuthill; Antoine Mérand, eds.) (Proceedings of SPIE), SPIE, 2018 no. 10701, 1070121, 12 pages | DOI

[56] S. Tolila; Guillaume Labeyrie; R. Kaiser; Jean-Pierre Rivet; William Guerin Increasing the sensitivity of stellar intensity interferometry with optical telescopes: first laboratory test of spectral multiplexing, Proceedings of the annual meeting of the French Society of Astronomy & Astrophysics (M. Béthermin; K. Baillié; N. Lagarde; J. Malzac; R.-M. Ouazzani; J. Richard; O. Venot; A. Siebert, eds.), Société Française d’Astronomie et d’Astrophysique (SF2A), 2024, pp. 197-200

[57] Joseph Ferrantini; Jesse Crawford; Sergei Kulkov et al. Multifrequency-resolved Hanbury Brown–Twiss effect, APL Photonics, Volume 10 (2025) no. 2, 020801, 9 pages | DOI

[58] Tommaso Milanese; Claudio Bruschini; Samuel Burri; Ermanno Bernasconi; Arin C. Ulku; Edoardo Charbon LinoSPAD2: an FPGA-based, hardware-reconfigurable 512×1 single-photon camera system, Opt. Express, Volume 31 (2023) no. 26, pp. 44295-44314 | DOI

[59] Jin Chang; Iman Esmaeil Zadeh; Johannes W. N. Los et al. Multimode-fiber-coupled superconducting nanowire single-photon detectors with high detection efficiency and time resolution, Appl. Opt., Volume 58 (2019) no. 36, pp. 9803-9807 | DOI

[60] Emma E. Wollman; Jason P. Allmaras; Andrew D. Beyer et al. SNSPD-based detector system for NASA’s Deep Space Optical Communications project, Opt. Express, Volume 32 (2024) no. 27, pp. 48185-48198 | DOI

[61] Fiona Fleming; Will McCutcheon; Emma E. Wollman et al. High-efficiency, high-count-rate 2D superconducting nanowire single-photon detector array, Opt. Express, Volume 33 (2025) no. 13, pp. 27602-27614 | DOI

[62] A. Visco; R. P. Drake; D. H. Froula; S. H. Glenzer; B. B. Pollock Temporal dispersion of a spectrometer, Rev. Sci. Instrum., Volume 79 (2008) no. 10, 10F545 | DOI

[63] Iman Esmaeil Zadeh; Jin Chang; Johannes W. N. Los; Samuel Gyger; Ali W. Elshaari; Stephan Steinhauer; Sander N. Dorenbos; Val Zwiller Superconducting nanowire single-photon detectors: A perspective on evolution, state-of-the-art, future developments, and applications, Appl. Phys. Lett., Volume 118 (2021) no. 19, 190502, 14 pages | DOI

[64] Francesco Gramuglia; Ming-Lo Wu; Claudio Bruschini; Myung-Jae Lee; Edoardo Charbon A low-noise CMOS SPAD pixel with 12.1 Ps SPTR and 3 Ns dead time, IEEE J. Sel. Top. Quantum Electron., Volume 28 (2022) no. 2, pp. 1-9 | DOI

[65] Jakub Jirsa; Sergei Kulkov; Raphael A. Abrahao et al. Fast data-driven spectrometer with direct measurement of time and frequency for multiple single photons, Opt. Express, Volume 33 (2025) no. 5, pp. 9962-9972 | DOI

[66] R. Hanbury Brown The intensity interferometer: its application to astronomy, Taylor & Francis, 1974, xvi+184 pages

[67] A. G. Kim; P. E. Nugent; Xingzhuo Chen; L. Wang; J. T. O’Brien Measuring type Ia supernova angular-diameter distances with intensity interferometry, Phys. Rev. D, Volume 111 (2025) no. 8, 083047, 12 pages | DOI

Cité par Sources :

Commentaires - Politique