[Interférométrie d’intensité stellaire en comptage de photons]
Stellar intensity interferometry consists in measuring the correlation of the light intensity fluctuations at two telescopes observing the same star. The amplitude of the correlation is directly related to the luminosity distribution of the star, which would be unresolved by a single telescope. This technique is based on the well-known Hanbury Brown and Twiss effect. After its discovery in the 1950s, it was used in astronomy until the 1970s, and then replaced by direct (“amplitude”) interferometry, which is much more sensitive, but also much more demanding. However, in recent years, intensity interferometry has undergone a revival. In this article, we present a summary of the state of the art, and we discuss in detail the signal-to-noise ratio of intensity interferometry in the framework of photon-counting detection.
L’interférométrie d’intensité stellaire consiste à mesurer la corrélation entre les fluctuations d’intensité de la lumière captée par deux télescopes observant la même étoile. L’amplitude de la corrélation est directement liée à la taille de l’étoile, qui ne serait pas résolue par un seul télescope. Cette technique est basée sur le célèbre effet Hanbury Brown et Twiss. Après sa découverte dans les années 1950, elle a été utilisée en astronomie jusque dans les années 1970, puis remplacée par l’interférométrie directe (ou d’amplitude), qui est beaucoup plus sensible, mais aussi beaucoup plus exigeante techniquement. Cependant, depuis quelques années, l’interférométrie d’intensité connaît un renouveau. Dans cet article, nous présentons un résumé de l’état de l’art et nous discutons en détail du rapport signal à bruit de l’interférométrie d’intensité dans le cadre de détecteurs en comptage de photons.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Interférométrie stellaire, effet Hanbury Brown et Twiss, détecteurs de photons uniques
William Guerin 1 ; Mathilde Hugbart 1 ; Sarah Tolila 1 ; Nolan Matthews 1, 2 ; Olivier Lai 3 ; Jean-Pierre Rivet 3 ; Guillaume Labeyrie 1 ; Robin Kaiser 1
CC-BY 4.0
@article{CRPHYS_2025__26_G1_659_0,
author = {William Guerin and Mathilde Hugbart and Sarah Tolila and Nolan Matthews and Olivier Lai and Jean-Pierre Rivet and Guillaume Labeyrie and Robin Kaiser},
title = {Stellar intensity interferometry in the photon-counting regime},
journal = {Comptes Rendus. Physique},
pages = {659--679},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {26},
doi = {10.5802/crphys.259},
language = {en},
}
TY - JOUR AU - William Guerin AU - Mathilde Hugbart AU - Sarah Tolila AU - Nolan Matthews AU - Olivier Lai AU - Jean-Pierre Rivet AU - Guillaume Labeyrie AU - Robin Kaiser TI - Stellar intensity interferometry in the photon-counting regime JO - Comptes Rendus. Physique PY - 2025 SP - 659 EP - 679 VL - 26 PB - Académie des sciences, Paris DO - 10.5802/crphys.259 LA - en ID - CRPHYS_2025__26_G1_659_0 ER -
%0 Journal Article %A William Guerin %A Mathilde Hugbart %A Sarah Tolila %A Nolan Matthews %A Olivier Lai %A Jean-Pierre Rivet %A Guillaume Labeyrie %A Robin Kaiser %T Stellar intensity interferometry in the photon-counting regime %J Comptes Rendus. Physique %D 2025 %P 659-679 %V 26 %I Académie des sciences, Paris %R 10.5802/crphys.259 %G en %F CRPHYS_2025__26_G1_659_0
William Guerin; Mathilde Hugbart; Sarah Tolila; Nolan Matthews; Olivier Lai; Jean-Pierre Rivet; Guillaume Labeyrie; Robin Kaiser. Stellar intensity interferometry in the photon-counting regime. Comptes Rendus. Physique, Volume 26 (2025), pp. 659-679. doi: 10.5802/crphys.259
[1] Correlation between photons in two coherent beams of light, Nature, Volume 177 (1956), pp. 27-29 | DOI
[2] A test of a new type of stellar interferometer on Sirius, Nature, Volume 178 (1956), pp. 1046-1048 | DOI
[3] Photon correlations, Phys. Rev. Lett., Volume 10 (1963), pp. 84-86 | DOI
[4] The quantum theory of optical coherence, Phys. Rev., Volume 130 (1963), 2529
[5] Nobel Lecture: One hundred years of light quanta, Rev. Mod. Phys., Volume 78 (2006) no. 4, pp. 1267-1278 | DOI
[6] On the fluctuations in signals returned by many independently moving scatterers, Reports, 465, Radiation Laboratory, Massachusetts Insitute of Technology, 1943, 28 pages
[7] et al. Field and intensity correlations: the Siegert relation from stars to quantum emitters, Eur. Phys. J. D, Atomic Mol. Opt. Plasma Phys., Volume 76 (2022) no. 12, 246 | DOI
[8] Optical coherence and quantum optics, Cambridge University Press, 1995, xxvi+1166 pages | DOI
[9] The concept of the photon in question: the controversy surrounding the HBT effect circa 1956–1958, Hist. Stud. Nat. Sci., Volume 43 (2012) no. 4, pp. 453-491 | DOI
[10] The question of correlation between photons in coherent light rays, Nature, Volume 178 (1956), pp. 1449-1450 | DOI
[11] Interferometry of the intensity fluctuations in light. I. Basic theory: the correlation between photons in coherent beams of radiation, Proc. R. Soc. Lond., Ser. A, Volume 242 (1957), pp. 300-324 | DOI
[12] On photon coincidences and Hanbury Brown’s interferometer, Opt. Acta, Volume 5 (1958) no. 3-4, pp. 93-100 | DOI
[13] Correlation between photons, in coherent beams of light, detected by a coincidence counting technique, Nature, Volume 180 (1957), pp. 324-326 | DOI
[14] Time-correlated photons, Nature, Volume 180 (1957), pp. 1035-1036 | DOI
[15] Quantum theory of interference effects in the mixing of light from phase-independent sources, Am. J. Phys., Volume 29 (1961) no. 8, pp. 539-545 | DOI
[16] The angular diameters of 32 stars, Mon. Not. Roy. Astron. Soc., Volume 167 (1974) no. 1, pp. 121-136 | DOI
[17] Interference fringes obtained on Vega with two optical telescopes, Astrophys. J., Volume 196 (1975), p. L71-L75 | DOI
[18] Optical intensity interferometry with the Cherenkov Telescope Array, Astropart. Phys., Volume 43 (2013), pp. 331-347 | DOI
[19] Feasibility of observing Hanbury Brown and Twiss phase, Mon. Not. Roy. Astron. Soc., Volume 446 (2014) no. 2, pp. 2065-2072 | DOI
[20] Capabilities of future intensity interferometers for observing fast-rotating stars: imaging with two- and three-telescope correlations, Mon. Not. Roy. Astron. Soc., Volume 453 (2015) no. 2, pp. 1999-2005 | DOI
[21] First intensity interferometry measurements with the H.E.S.S. telescopes, Mon. Not. Roy. Astron. Soc., Volume 527 (2023) no. 4, pp. 12243-12252 | DOI
[22] Simultaneous two-colour intensity interferometry with H.E.S.S., Mon. Not. Roy. Astron. Soc., Volume 537 (2024) no. 3, pp. 2334-2341 | DOI
[23] et al. Optical intensity interferometry observations using the MAGIC Imaging Atmospheric Cherenkov Telescopes, Mon. Not. Roy. Astron. Soc., Volume 491 (2019) no. 2, pp. 1540-1547 | DOI
[24] et al. Performance and first measurements of the MAGIC stellar intensity interferometer, Mon. Not. Roy. Astron. Soc., Volume 529 (2024) no. 4, pp. 4387-4404 | DOI
[25] et al. Demonstration of stellar intensity interferometry with the four VERITAS telescopes, Nat. Astron., Volume 4 (2020) no. 12, pp. 1164-1169 | DOI
[26] et al. An angular diameter measurement of UMa via stellar intensity interferometry with the VERITAS observatory, Astrophys. J., Volume 966 (2024) no. 1, 28, 13 pages | DOI
[27] Stellar interferometer at Narrabri observatory, Nature, Volume 218 (1968), pp. 637-641
[28] Monte Carlo simulation of stellar intensity interferometry, Mon. Not. Roy. Astron. Soc., Volume 430 (2013) no. 4, pp. 3187-3195 | DOI
[29] Optical long baseline intensity interferometry: prospects for stellar physics, Exp. Astron., Volume 46 (2018), pp. 531-542 | DOI
[30] Stellar intensity interferometry of Vega in photon counting mode, Mon. Not. Roy. Astron. Soc., Volume 506 (2021) no. 2, pp. 1585-1594 | DOI
[31] Observations with the Southern Connecticut Stellar Interferometer. I. Instrument description and first results, Astron. J., Volume 163 (2022) no. 2, 92, 16 pages | DOI
[32] On-sky demonstration of an ultra-fast intensity interferometry instrument utilising hybrid single photon counting detectors, J. Astron. Telesc. Instrum. Syst., Volume 11 (2025) no. 3, 035005, 14 pages | DOI
[33] et al. Resolving accretion disks with quantum optics, Proceedings of the 38th International Cosmic Ray Conference, PoS, 2023, 1491, 8 pages | DOI
[34] Intensity interferometer results on Sirius with 0.25 m telescopes, Mon. Not. Roy. Astron. Soc., Volume 537 (2025) no. 3, pp. 2527-2534 | DOI
[35] High angular resolution imaging with stellar intensity interferometry using air Cherenkov telescope arrays, Mon. Not. Roy. Astron. Soc., Volume 419 (2012) no. 1, pp. 172-183 | DOI
[36] Imaging submilliarcsecond stellar features with intensity interferometry using air Cherenkov telescope arrays: imaging submilliarcsecond stellar features, Mon. Not. Roy. Astron. Soc., Volume 424 (2012) no. 2, pp. 1006-1011 | DOI
[37] Long-baseline optical intensity interferometry. Laboratory demonstration of diffraction-limited imaging, Astron. Astrophys., Volume 580 (2015), A99, 13 pages
[38] et al. I3T: Intensity Interferometry Imaging Telescope, Mon. Not. Roy. Astron. Soc., Volume 505 (2021) no. 2, pp. 2328-2335 | DOI
[39] Temporal intensity correlation of light scattered by a hot atomic vapor, Phys. Rev. A, Volume 93 (2016), 043826 | DOI
[40] Temporal intensity interferometry: photon bunching in three bright stars, Mon. Not. Roy. Astron. Soc., Volume 472 (2017), pp. 4126-4132 | DOI
[41] Spatial intensity interferometry on three bright stars, Mon. Not. Roy. Astron. Soc., Volume 480 (2018) no. 4, pp. 245-250 | DOI
[42] Measuring temporal photon bunching in backbody radiation, Astrophys. J., Volume 789 (2014), L10, 5 pages
[43] et al. Intensity interferometry of P Cygni in the H emission line: towards distance calibration of LBV supergiant stars, Mon. Not. Roy. Astron. Soc., Volume 494 (2020), pp. 218-227 | DOI
[44] et al. Combined spectroscopy and intensity interferometry to determine the distances of the blue supergiants P Cygni and Rigel, Mon. Not. Roy. Astron. Soc., Volume 515 (2022) no. 1, pp. 1-12 | DOI
[45] et al. Intensity interferometry observations of the H envelope of Cas with MéO and a portable telescope, Astron. J., Volume 165 (2023), 117, 6 pages | DOI
[46] The wind momentum-luminosity relationship of galactic A- and B-supergiants, Astron. Astrophys., Volume 350 (1999), pp. 970-984 | DOI
[47] et al. Revival of intensity interferometry with modern photonic technologies, Proceedings of the annual meeting of the French Society of Astronomy & Astrophysics (A. Siebert; K. Baillié; E. Lagadec; N. Lagarde; J. Malzac; J.-B. Marquette; M. N’Diaye; J. Richard; O. Venot, eds.), Société Française d’Astronomie et d’Astrophysique (SF2A), 2021, 334 pages
[48] et al. Intensity interferometry at Calern and beyond: progress report, Optical and infrared interferometry and imaging VIII (Proceedings of SPIE), SPIE, 2022 no. 12183, 121830G, 13 pages | DOI
[49] Interferometry of the intensity fluctuations in light III. Applications to astronomy, Proc. R. Soc. Lond., Ser. A, Volume 248 (1958), pp. 199-221
[50] et al. Comparing different approaches for stellar intensity interferometry, Mon. Not. Roy. Astron. Soc., Volume 512 (2022) no. 2, pp. 1722-1729 | DOI
[51] Probing and resolving AGN disks with ultrafast photon counters, Phys. Rev. D, Volume 109 (2024) no. 12, 123029 | DOI
[52] Performance of the upgraded VERITAS Stellar Intensity Interferometer (VSII), Optical and infrared interferometry and imaging VIII (Antoine Mérand; Stephanie Sallum; Joel Sanchez-Bermudez, eds.) (Proceedings of SPIE), SPIE, 2022 no. 12183, 121830D, 15 pages | DOI
[53] The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks?, J. Mod. Opt., Volume 48 (2001) no. 13, pp. 2039-2047 | DOI
[54] Optical multi-channel intensity interferometry — or: how to resolve O-stars in the Magellanic clouds, J. Korean Astron. Soc., Volume 47 (2014), pp. 235-253 | DOI
[55] et al. Intensity interferometry revival on the Côte d’Azur, Optical and infrared interferometry and imaging VI (Michelle J. Creech-Eakman; Peter G. Tuthill; Antoine Mérand, eds.) (Proceedings of SPIE), SPIE, 2018 no. 10701, 1070121, 12 pages | DOI
[56] Increasing the sensitivity of stellar intensity interferometry with optical telescopes: first laboratory test of spectral multiplexing, Proceedings of the annual meeting of the French Society of Astronomy & Astrophysics (M. Béthermin; K. Baillié; N. Lagarde; J. Malzac; R.-M. Ouazzani; J. Richard; O. Venot; A. Siebert, eds.), Société Française d’Astronomie et d’Astrophysique (SF2A), 2024, pp. 197-200
[57] et al. Multifrequency-resolved Hanbury Brown–Twiss effect, APL Photonics, Volume 10 (2025) no. 2, 020801, 9 pages | DOI
[58] LinoSPAD2: an FPGA-based, hardware-reconfigurable 512×1 single-photon camera system, Opt. Express, Volume 31 (2023) no. 26, pp. 44295-44314 | DOI
[59] et al. Multimode-fiber-coupled superconducting nanowire single-photon detectors with high detection efficiency and time resolution, Appl. Opt., Volume 58 (2019) no. 36, pp. 9803-9807 | DOI
[60] et al. SNSPD-based detector system for NASA’s Deep Space Optical Communications project, Opt. Express, Volume 32 (2024) no. 27, pp. 48185-48198 | DOI
[61] et al. High-efficiency, high-count-rate 2D superconducting nanowire single-photon detector array, Opt. Express, Volume 33 (2025) no. 13, pp. 27602-27614 | DOI
[62] Temporal dispersion of a spectrometer, Rev. Sci. Instrum., Volume 79 (2008) no. 10, 10F545 | DOI
[63] Superconducting nanowire single-photon detectors: A perspective on evolution, state-of-the-art, future developments, and applications, Appl. Phys. Lett., Volume 118 (2021) no. 19, 190502, 14 pages | DOI
[64] A low-noise CMOS SPAD pixel with 12.1 Ps SPTR and 3 Ns dead time, IEEE J. Sel. Top. Quantum Electron., Volume 28 (2022) no. 2, pp. 1-9 | DOI
[65] et al. Fast data-driven spectrometer with direct measurement of time and frequency for multiple single photons, Opt. Express, Volume 33 (2025) no. 5, pp. 9962-9972 | DOI
[66] The intensity interferometer: its application to astronomy, Taylor & Francis, 1974, xvi+184 pages
[67] Measuring type Ia supernova angular-diameter distances with intensity interferometry, Phys. Rev. D, Volume 111 (2025) no. 8, 083047, 12 pages | DOI
Cité par Sources :
Commentaires - Politique
