Plan
Comptes Rendus

A European perspective on maize history
[L’histoire du maïs cultivé vue sous un angle européen]
Comptes Rendus. Biologies, On the trail of domestications, migrations and invasions in agriculture, Volume 334 (2011) no. 3, pp. 221-228.

Résumés

Maize was domesticated at least 8700 years ago in the highlands of Mexico. Genome-wide studies have greatly contributed to shed light into the diffusion of maize through the Americas from its center of origin. Also the presence of two European introductions in southern and northern Europe is now established. Such a spread was accompanied by an extreme diversification, and adaptation to the long days and low temperatures of temperate climates has been a key step in maize evolution. Linkage mapping and association mapping have successfully led to the identification of a handful set of the genetic factors that have contributed to maize adaptation, opening the way to new discoveries. Ultimately, these alleles will contribute to sustain breeding efforts to meet the new challenges raised by the evolution of mankind.

La domestication du maïs dans les régions montagneuses du sud de la ville de Mexico remonte à au moins 8700 ans. Les études génomiques ont contribué à établir des scénarios de diffusion du maïs à travers le continent américain à partir de son centre d’origine. Par ailleurs, la présence de deux introductions européennes, l’une au nord de l’Europe et l’autre au sud de l’Espagne a pu être établie. L’une des étapes clé de la très large diffusion de l’espèce à l’échelle mondiale et de sa diversification a été son adaptation à des conditions climatiques tempérées, soit une floraison en jours longs et des températures basses. Des études de cartographie classique puis plus récemment de génétique d’association ont permis l’identification d’un certain nombre de facteurs génétiques qui ont contribué à cette adaptation, ouvrant la voie aux recherches futures, notamment la validation fonctionnelle de ces candidats et l’identification d’allèles d’intérêt. Ces recherches seront décisives pour soutenir les efforts actuels d’amélioration du maïs et relever les défis posés par les changements climatiques et la baisse de sécurité alimentaire.

Métadonnées
Publié le :
DOI : 10.1016/j.crvi.2010.12.015
Keywords: Zea Mays, Domestication, Europe, Adaptation, Breeding
Mots-clés : Zea mays, Domestication, Europe, Adaptation, Amélioration

Maud Irène Tenaillon 1, 2 ; Alain Charcosset 1

1 CNRS, INRA, UPS, AgroParisTech, UMR 0320/UMR 8120 génétique végétale, 91190 Gif-sur-Yvette, France
2 Department of Ecology and Evolutionary Biology, U.C. Irvine, Irvine, CA 92617, USA
@article{CRBIOL_2011__334_3_221_0,
     author = {Maud Ir\`ene Tenaillon and Alain Charcosset},
     title = {A {European} perspective on maize history},
     journal = {Comptes Rendus. Biologies},
     pages = {221--228},
     publisher = {Elsevier},
     volume = {334},
     number = {3},
     year = {2011},
     doi = {10.1016/j.crvi.2010.12.015},
     language = {en},
}
TY  - JOUR
AU  - Maud Irène Tenaillon
AU  - Alain Charcosset
TI  - A European perspective on maize history
JO  - Comptes Rendus. Biologies
PY  - 2011
SP  - 221
EP  - 228
VL  - 334
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crvi.2010.12.015
LA  - en
ID  - CRBIOL_2011__334_3_221_0
ER  - 
%0 Journal Article
%A Maud Irène Tenaillon
%A Alain Charcosset
%T A European perspective on maize history
%J Comptes Rendus. Biologies
%D 2011
%P 221-228
%V 334
%N 3
%I Elsevier
%R 10.1016/j.crvi.2010.12.015
%G en
%F CRBIOL_2011__334_3_221_0
Maud Irène Tenaillon; Alain Charcosset. A European perspective on maize history. Comptes Rendus. Biologies, On the trail of domestications, migrations and invasions in agriculture, Volume 334 (2011) no. 3, pp. 221-228. doi : 10.1016/j.crvi.2010.12.015. https://comptes-rendus.academie-sciences.fr/biologies/articles/10.1016/j.crvi.2010.12.015/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

Plant and animal domestication and their subsequent worldwide diffusion have had profound consequences on human history. It has created the ground for the rise of civilization, through the facilitation of population expansion, the explosion of technology that has accompanied agricultural development and the subsequent social stratification [1]. Tracing back the history of cultigens, from their initial domestication to their most recent improvement, has therefore always fascinated scientists starting with Darwin [2]. Understanding the evolution of cultivated species requires investigations from multiple areas of research, including archaeology, history, social sciences, botany, molecular biology and evolutionary genetics. Often, discoveries in one research area drive future investigations in another and ultimately, only the combination of all sources of data can afford a comprehensive view of domesticated species that have built the foundation of human modern societies.

Along with rice and wheat, maize is one of the world leading crops and a critical source of food, feed, fuel and fibers. As such, it has traditionally been used as a model for plant geneticists. Maize is unique in at least two respects. First, it has the broadest cultivated range of all crops, from the south of Chile 40°S to Canada 50°N, from the Andean mountains where it can grow at altitudes of 3400 m above the sea level to Caribbean islands. Second, it has an unprecedented level of morphological, nucleotide [3,4] and structural diversity [5]. Hence, two maize inbred lines have on average a greater divergence than two hominids separated by 3.5 million years [6]. While the reasons for this extraordinary diversity are still unclear, it provides a unique opportunity to assess maize genetic structure and infer hypothetical routes of its worldwide dissemination. Thereafter, we review the current knowledge on maize domestication and diffusion in the Americas that conciliates archaeological, historical and genetic data. We then focus on its recent introduction to Europe followed by subsequent breeding, which includes the development of European populations, hybrids and management of genetic resources. Finally, we discuss the genetic determinants of its adaptation and provide some guidelines for future prospects.

2 Maize domestication

The most recent maize archaeological discovery [7,8] attests its presence in the Balsas region valley of Mexico, 8700 cal. years BP (calibrated years before the present) (Fig. 1). This estimate corroborates previous genetic data establishing that maize was domesticated once in that region from the subspecies Zea mays ssp. parviglumis ∼9000 years ago [9]. Cultivated maize exhibits a profound morphological differentiation with its wild progenitor, which includes modification in vegetative architecture (i.e. reduction in branching), ear morphology (i.e. the number, position along vegetative axes, size, shape and number of rows per ear), kernel morphology (i.e. kernel shape, size, hardness) and kernel characteristics (i.e. dormancy, shattering, starch and protein content). So far, two domestication genes have been cloned: tb1, teosinte branched 1, a transcription factor whose overexpression represses the growth of axillary meristems and results in the unbranched plant architecture typical of maize [10,11]; and tga1, teosinte glume architecture 1, a transcription factor responsible for the ‘naked’ grain phenotype of maize and contributing to the organization of an ear cob being able to bear several hundreds of kernels [12].

Fig. 1

Domestication center and hypothetical diffusion of maize through the Americas and Europe. Picture on the left represents typical ears and kernels of teosinte, the wild progenitor of maize. The main maize genetic groups are represented according to [34]. Black arrows indicate the expansion scenario of maize out of the domestication area as proposed by [34], [36] and [50]. Doted arrow indicates introduction in Italy hypothesized by [50], which deserves further investigations. Negative dates are indicated in calibrated years before present and positive dates are indicated in AD. Recent hybridizations include Corn Belt dents and European maize from Pyrenees-Galicia. a: [64]; b: [65]; c: [52]; d: [66]; e: [67]; f: [7]; g: [68]; h: [69]; i: [70]; j: [71]; k: [72]; l: [73]; m: [74]; n: [75]; o: [50]; p: [44];. Masquer

Domestication center and hypothetical diffusion of maize through the Americas and Europe. Picture on the left represents typical ears and kernels of teosinte, the wild progenitor of maize. The main maize genetic groups are represented according to [34]. Black ... Lire la suite

Although the timing of maize domestication is still subject to debate, several lines of evidence suggest that this process could have been relatively fast. First, morphological observation of cobs dating back 6250 cal BP [13] and 5500 cal BP [14] from Guila Naquitz (Oaxaca, Mexico) and Tehuacan valley (Puebla, Mexico), respectively, reported the presence of non-disarticulating rachis, and exposed grains [15]; good evidence of the latter is actually already present 8700 cal BP [7]. These results have been confirmed by the genetic analysis of cob specimens dating back 4400 BP [16] showing that the cultivated alleles at three genes including tb1 and two genes influencing protein and starch quality and quantity (pbf and su1) are present. Altogether, these observations suggest first that soon after maize was brought in cultivation by early farmers in the Americas, it was already under selection for desirable traits. Second, selection may have been facilitated by the initial presence of cultivated alleles in the initial teosinte gene pool. Hence, the frequency of the Tb1 cultivated allele is > 30% in teosinte [16] and Weber et al. [17] have shown that for many of the candidate genes possibly selected during maize domestication, the allele conferring a more maize-like phenotype was always found in teosintes (sometimes at elevated frequency).

While selection at targeted domestication genes has created a local depletion of diversity [11,12,18], indirect genome wide effect of selection on genetic diversity is very limited [19], consistent with the rapid breakdown of linkage disequilibrium with distance in maize [3,20]. The genome wide reduction of diversity in maize as compared to teosintes, which is ∼20% [21], is therefore mainly attributable to a domestication bottleneck of moderate intensity [3,21,22]. Recurrent gene flow with teosintes, in particular from the subspecies mexicana to maize, may also have contributed to enhance maize diversity after its initial domestication [9]. Indeed, mexicana grows as a weed in maize fields particularly in highlands of central and northern Mexico, and persistent hybrid swarms suggest that mexicana may have contributed significantly to maize diversity [23]. This hypothesis is consistent with evidence of recent gene flow from mexicana to maize [24–26].

3 Maize diffusion through the Americas

The history of maize diffusion through the Americas from its center of origin in Mexican highlands (Fig. 1) has been assessed using different types of markers following the development of new technologies. Initial work was carried out using chromosomal heterochromatic bands (knobs) morphology and suggested that maize first spread into South America through the Andes and more recently along the east coast of Brazil [27]. Isozymes were subsequently used and established a clear distinction between maize growing at low and high elevation both in Mexico [28] and Guatemala [29]. In addition, these studies provided new highlights into the migration paths of maize, northwards from Mexico to USA and Canada [30] and southwards from Mexico to the Caribbean coast of South America to the Caribbeans, and from Mexican highlands to Guatemalan highlands (reviewed in [31]). These early studies therefore suggested the existence of two southwards routes, a highland route emerging from the Mexican highlands and reaching the Andes and a lowland route from the Mexican lowlands expanding toward the East coast of South America, middle South American maize (Bolivia, Argentina, Paraguay and Uruguay) being the meeting point of these two expansions [32].

Further examination of microsatellite variability in ancient DNA specimens supports these observations [33]. However broader microsatellite surveys [9,34] suggest instead that maize southward expansion has occurred through the lowland tropics of Mexico from Central America to Guatemala to the Columbian lowlands and subsequently followed two paths, a highland path along the Andes and a lowland path spreading in the East coast of South America and reaching the middle South America. Under this scenario adaptation to altitude would have been acquired de novo in the Andes [34]. In fact, using microsatellites, Vigouroux et al. [34] found a very poor correlation (r2 = 0.044) between genetic distance and altitude, which therefore does not account for distinction between maize growing at high and low elevations both in Mexico and Guatemala.

Beside this discrepancy, most observations from microsatellite markers corroborate earlier studies [9,34–37] that:

  • • Caribbean maize was imported from South America from Trinidad and Tobago;
  • • lowland South America is the contact zone between the highland path (Andes) and the lowland path (East Coast of South America);
  • • northward expansion has occurred through northern Mexico, south western USA to northern USA and Canada;
  • • southeast USA material (corn belt mid western dents) is a hybrid derivative from southern dent-northern flint crosses. Maize cultivation in northern regions is attested between AD (Anno Domini) 800 and 1100 [38], when maize rapidly replaced sunflower. It also formed the staple food for the mixed agricultural hunter gatherers Iroquoian populations that populated North America up to the Saint Laurent at the time of Discovery [39].

Today the structure of maize genetic diversity classifies all races in four genetic clusters that are poorly differentiated [34]:

  • • the Mexican highlands that cover highland Mexico, northern Mexico and south western USA and most lowland Mexico;
  • • the tropical lowlands that cover Guatemala and southern Mexico, the Caribbeans, northern South American and middle South American maize;
  • • the Andean group encompassing the Andean maize and part of the middle South American;
  • • the northern USA group that includes northern USA and Canada as well as some south Andean maize or middle American maize that are not shown on the map in Fig. 1 but were imported form northern USA recently [34,36]. Note that this last group appears particularly divergent from any other maize race [37], although it is hypothesized to have been derived from southwestern USA material. Interestingly, among the 310 races analyzed in [34] 44% have an ancestry in more than one of the clusters, underlying the complex history of maize that has been punctuated by germplasm exchange, admixture and potential long distance gene flow [40,41].

4 Maize introduction to Europe and subsequent utilization

The use of local names for maize in Europe, such as “Turkish Corn” in Germany, was first taken as an evidence for its introduction from Middle East (discussed in [42]). But its American origin has since been well established by the historian Matthioli [43]. The first historical record attesting maize European introduction is that from the Caribbean by Colombus in Spain, 1493. From there, maize was rapidly brought to the Vatican [44] and the earliest European representations of maize are most likely those painted in frescoes near Rome dating from 1517 [42]. While Caribbean tropical maize was likely not adapted to cultivation beyond the warm regions of southern Europe (see paragraph 5, [44]), its cultivation in northern European regions has been unambiguously reported since 1539 in Germany by the German herbalist Bock [45], ‘in all gardens, almost everywhere’ according to [46]. Maize was also already well established in Alpine regions of Italy by 1570 [43,47]. These results suggest either a rapid expansion from southern Europe accompanied by adaptation to low temperatures, or the existence of a second distinct introduction of maize pre-adapted to temperate climates. Interestingly, early botanical records describe two highly distinct morphotypes [45] from the Americas. Maize became popular during the 17th century in northern Spain [48] and southwestern France [49].

Large-scale molecular analyses of maize from both Europe and the Americas [36,50] have confirmed that the diversity of European maize derives from that of the American maize and represents ∼75% of the latter, illustrating the bottleneck inherent to all introductions. These results have also revealed two important observations: (i) several accessions cultivated in southern Spain are related to Caribbean maize, consistent with an introduction by Colombus; and (ii) traditional landraces from northern Europe are instead related to North American northern flint varieties. The latter supports an independent introduction of northern American materials pre-adapted to northern European climate (Fig. 1), soon after Discovery as first hypothesized by [45]. History of the Discovery of North America [51] has revealed numerous expeditions between 1492 and 1539, both official expeditions from England, Spain and France (often involving multinational crews), and unofficial fishing expeditions toward the Saint Laurent, thereby offering numerous opportunities for a second maize introduction to Europe (see [36,50]) at a time consistent with the broad scale cultivation in Germany reported by [45] and [46]. Subsequent introductions from northern America have probably occurred as documented in 1604 for northern Spain [48]. In addition similarities between Italian traditional varieties and a few varieties from South America, suggest the contribution of a third introduction (dotted arrows in Fig. 1).

Interestingly, molecular analyses have also revealed that European varieties cultivated at mid-European latitudes (from the Pyrenées mountains, to northern Portugal) have no direct American counterpart but share alleles from both northern flints and tropical lowlands. Northern flint material therefore appears to have contributed to adaptation in these regions, similar to what has been documented in the Corn Belt, where farmers crossed “southern dents” from tropical origins with northern flints to adjust flowering time [52,53]. Independent introductions, hybridization and local selection have shaped new genetic groups specific to European maize [54]. Hence, mid-latitude European materials are now sufficiently divergent from founder gene pools to appear as distinct genetic groups rather than hybrids in clustering analyses [54].

After World War 2, European traditional varieties were used to develop hybrid varieties [55] adapted to northern European conditions. Hence, inbred lines derived from the French southwestern Lacaune population by André Cauderon and co-workers, namely F2 and F7 (for France n°2 and 7, respectively), were crossed to inbred lines developed by USA research. The resulting hybrids (Fig. 2) over yielded by 20–25% the varieties imported from the USA [56] and extended maize cultivation North of the Loire Valley. The use of genetic complementarities between the highly divergent European flints and the USA dents still forms the core of most hybrid breeding programs in northern Europe. Hybrid varieties later outperformed and replaced local open pollinated varieties from southern western France, Bresse and Alsace. Genetic studies illustrate that the evolution from traditional varieties to hybrids and further hybrid breeding has led to a shift in the allelic composition of the cultivated gene pool without any severe depletion of diversity [57]. Nevertheless, European traditional varieties are being preserved in collections and hence accessible for breeding purposes.

Fig. 2

F2 and F7 are two European flint lines that were crossed with a US dent line (W182E) to form the French variety INRA 260. The INRA 260 hybrid was released in 1960 and was largely cultivated in France in the 1960s (source A. Cauderon and X. Lascols).

5 Maize adaptation

Maize expansion has been accompanied by a dramatic adaptation to environmental conditions, in particular the adjustment of plant cycle to the duration of the growing season. Gouesnard et al. [58] have illustrated that tropical maize accessions display a very large variability for duration of planting to flowering both in their original short day environment and under long days, with substantial variation in photoperiod sensitivity. However, none of these materials are able to produce grains in northern Europe. The initial range of variation has therefore been expended by the selection of early flowering types adapted both to a short growing season and low temperature.

Large scale QTL mapping from multiple crosses has revealed that variation in flowering time is controlled by at least 50–60 loci (QTL) with mild effects [59,60]. These loci affect flowering time through either sensitivity to photoperiod [61] or intrinsic earliness. Most of them display complex allelic series with at least three classes of effects [59]. Understanding the nature of allelic series at these QTLs is now possible thanks to association mapping [20] and linkage-based fine mapping [62]. The most advanced case study is the locus vgt1 cloned by Salvi et al. [62], which regularly appeared in QTL mapping studies and was confirmed to display a strong effect on flowering time by association mapping [63]. Vgt1 corresponds to a 2.7 kb non coding region located upstream of gene ZmAp2, and controls its expression. Polymorphism at vgt1 is structured into major haplotypes that can be discriminated by the absence or presence of a short transposable element (a MITE, Miniature Inverted repeat Transposable Element). The absence or presence of the MITE marks the early and late flowering alleles, respectively. Those alleles are characterized by a seven day difference in flowering time in climatic conditions of northern France. Frequency of alleles at vgt1 among a set of 256 populations (Fig. 3) reveals that (i) both alleles have coexisted with balanced frequencies in Mexican highlands, where farmers manage maize varieties with contrasted cycle duration, (ii) the early allele was eliminated in lowland warm environments where early flowering is deleterious because of its negative impact on plant size and yield, and (iii) the early allele was selected positively during migration in cold temperate environments, i.e. along the “northern flint migration route”, thereby contributing to its rapid success in northern Europe. Note that although earliness has been favored in the high elevation of Andes, the early allele at Vgt1 is not found in this material, consistent with the tropical lowland origin of this group.

Fig. 3

A: Geographical distribution of the MITE insertion associated with early flowering at the Vgt1 locus in 256 European and American landraces. B: MITE frequency along latitude (X-axis) and elevation (Y-axis) for a subset of 77 landraces from Central America and the Caribbean (delimited by the rectangle in A).

6 Conclusion

Maize is certainly one of the most striking examples of plant domestication, with two genes conferring radical changes in plant architecture and grain type, thus explaining its wide distribution and success in agriculture. Recurrent gene flow with the original wild gene pool has contributed to retain a large fraction of the genetic variability of the wild gene pool, facilitating maize extreme diversification. From an original pool of tropical varieties un-adapted to cultivation under the long days and low temperatures of temperate climates, Amerindian populations and, later, farmers and breeders have successfully selected varieties adapted to cultivation up to 50° North. This was accompanied by a strong selection at target genes and a complete reorganization of the genetic diversity through selection, inbreeding and hybridization. Efforts are now devoted to the conservation of this genetic patrimony, which presently receives increasing attention for direct cultivation, for cultural demonstration and/or alternative farming systems, and for genetic studies aiming at identifying genes and alleles of interest. Such alleles will contribute to sustain breeding efficiency thereby meeting the new challenges raised by the evolution of mankind.

Conflict of interest statement

The authors have no conflict of interest.

Acknowledgements

Alain Charcosset is grateful to Pierre Dubreuil, Cécile Rebourg, B. Gouesnard, M. Chastanet and Sébastien Ducrocq for their contribution to the results presented here and to Céline Mir for ongoing research.


Bibliographie

[1] J. Diamond Evolution consequences and future of plant and animal domestication, Nature, Volume 418 (2002), pp. 700-707

[2] C. Darwin The variation of animals and plants under domestication, D. Appleton and Company, 1883

[3] M.I. Tenaillon; M.C. Sawkins; A.D. Long; R.L. Gaut; J.F. Doebley; B.S. Gaut Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp mays L.), Proc. Natl. Acad. Sci. USA, Volume 98 (2001), pp. 9161-9166

[4] M.A. Gore; J.M. Chia; R.J. Elshire; Q. Sun; E.S. Ersoz; B.L. Hurwitz; J.A. Peiffer; M.D. McMullen; G.S. Grills; J. Ross-Ibarra; D.H. Ware; E.S. Buckler A first-generation haplotype map of maize, Science, Volume 326 (2009), pp. 1115-1117

[5] N.M. Springer, K. Ying, Y. Fu, T.M. Ji, C.T. Yeh, Y. Jia, W. Wu, T. Richmond, J. Kitzman, H. Rosenbaum, A.L. Iniguez, W.B. Barbazuk, J.A. Jeddeloh, D. Nettleton, P.S. Schnable, Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content, Plos Genet. 5 (2009) e1000734.

[6] E.S. Buckler IV; B.S. Gaut; M.D. McMullen Molecular and functional diversity of maize, Curr. Opin. Plant Biol., Volume 9 (2006), pp. 172-176

[7] D.R. Piperno; A.J. Ranere; I. Holst; J. Iriarte; R. Dickau Starch grain and phytolith evidence for early ninth millennium BP maize from the Central Balsas River Valley, Mexico, Proc. Natl. Acad. Sci. USA, Volume 106 (2009), pp. 5019-5024

[8] A.J. Ranere; D.R. Piperno; I. Holst; R. Dickau; J. Iriarte The cultural and chronological context of early Holocene maize and squash domestication in the Central Balsas River Valley, Mexico, Proc. Natl. Acad. Sci. USA, Volume 106 (2009), pp. 5014-5018

[9] Y. Matsuoka; Y. Vigouroux; M.M. Goodman; J. Sanchez G.; E. Buckler; J. Doebley A single domestication for maize shown by multilocus microsatellite genotyping, Proc. Natl. Acad. Sci. USA, Volume 99 (2002), pp. 6080-6084

[10] J. Doebley; A. Stec; L. Hubbard The evolution of apical dominance in maize, Nature, Volume 386 (1997), pp. 485-488

[11] R.L. Wang; A. Stec; J. Hey; L. Lukens; J. Doebley The limits of selection during maize domestication, Nature, Volume 398 (1999), pp. 236-239

[12] H. Wang; T. Nussbaum-Wagler; B. Li; Q. Zhao; Y. Vigouroux; M. Faller; K. Bomblies; L. Lukens; J.F. Doebley The origin of the naked grains of maize, Nature, Volume 436 (2005), pp. 714-719

[13] D.R. Piperno; K.V. Flannery The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications, Proc. Natl. Acad. Sci. USA, Volume 98 (2001), pp. 2101-2103

[14] A.B. Long; B.F. Benz; D.J. Donahue; A. Jull; L.J. Toolin First direct AMS dates on early maize from Tehuacán, Mexico, Radiocarbon, Volume 31 (1989), pp. 1035-1040

[15] B.F. Benz Archeological evidence of teosinte domestication from Guilà Naquitz, Oaxaca, Proc. Natl. Acad. Sci. USA, Volume 98 (2001), pp. 2104-2106

[16] V. Jaenicke-Després; E.S. Buckler IV; B.D. Smith; M.T.P. Gilbert; A. Cooper; J. Doebley; S. Paabo Early allelic selection in maize as revealed by ancient DNA, Science, Volume 302 (2003), pp. 1206-1208

[17] A. Weber; R.M. Clark; L. Vaughn; J.D. Sanchez-Gonzalez; J.M. Yu; B.S. Yandell; P. Bradbury; J. Doebley Major regulatory genes in maize contribute to standing variation in teosinte (Zea mays ssp parviglumis), Genetics, Volume 177 (2007), pp. 2349-2359

[18] M. Yamasaki; M.I. Tenaillon; I.V. Bi; S.G. Schroeder; H. Sanchez-Villeda; J.F. Doebley; B.S. Gaut; M.D. McMullen A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement, Plant Cell, Volume 17 (2005), pp. 2859-2872

[19] A.C. Thuillet; M.I. Tenaillon; L.K. Anderson; S.E. Mitchell; S. Kresovich; S.M. Stack; B. Gaut; J. Doebley A weak effect of background selection on trinucleotide microsatellites in maize, J. Hered., Volume 99 (2008), pp. 45-55

[20] J.M. Thornsberry; M.M. Goodman; J. Doebley; S. Kresovich; D. Nielsen; E.S. Buckler Dwarf8 polymorphisms associate with variation in flowering time, Nature Genet., Volume 28 (2001), pp. 286-289

[21] S.I. Wright; I.V. Bi; S.G. Schroeder; M. Yamasaki; J.F. Doebley; M.D. McMullen; B.S. Gaut The effects of artificial selection on the maize genome, Science, Volume 308 (2005), pp. 1310-1314

[22] A. Eyre-Walker; R.L. Gaut; H. Hilton; D.L. Feldman; B.S. Gaut Investigation of the bottleneck leading to the domestication of maize, Proc. Natl. Acad. Sci. USA, Volume 95 (1998), pp. 4441-4446

[23] N.C. Ellstrand; L.C. Garner; S. Hegde; R. Guadagnuolo; L. Blancas Spontaneous hybridization between maize and teosinte, J. Hered., Volume 98 (2007), p. 183

[24] A. Pineyro-Nelson; J. Van Heerwaarden; H.R. Perales; J.A. Serratos-Hernandez; A. Rangel; M.B. Hufford; P. Gepts; A. Garay-Arroyo; R. Rivera-Bustamante; E.R. Alvarez-Buylla Transgenes in Mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations, Mol. Ecol., Volume 18 (2009), pp. 750-761

[25] J. Ross-Ibarra; M.I. Tenaillon; B.S. Gaut Historical divergence and gene flow in the genus Zea, Genetics, Volume 181 (2009), pp. 1399-1413

[26] K. Fukunaga; J. Hill; Y. Vigouroux; Y. Matsuoka; J. Sanchez; K.J. Liu; E.S. Buckler; J. Doebley Genetic diversity and population structure of teosinte, Genetics, Volume 169 (2005), pp. 2241-2254

[27] B. McClintock, Y. Kato, A. Bluemenshein, Chromosome constitution of races of maize, Colegio de Postgraduados, Chapingo, Mexico, 1981.

[28] J.F. Doebley; M.M. Goodman; C.W. Stuber Isozyme variation in the races of maize from Mexico, Am. J. Bot., Volume 72 (1985), pp. 629-639

[29] P.K. Bretting; M.M. Goodman; C.W. Stuber Isozymatic variation in Guatamalen races of maize, Am. J. Bot., Volume 77 (1990), pp. 211-225

[30] J. Doebley; J.D. Wendel; J.S.C. Smith; C.W. Stuber; M.M. Goodman The origin of cornbelt maize - the isozyme evidence, Econ. Bot., Volume 42 (1988), pp. 120-131

[31] J. Doebley Molecular evidence and the evolution of maize, Econ. Bot., Volume 44 (1990), pp. 6-27

[32] G.J. Sanchez; M.M. Goodman; C.W. Stuber Racial diversity of maize in Brazil and adjacent areas, Maydica, Volume 52 (2007), pp. 13-30

[33] F.O. Freitas; R. Bendel; R.G. Allaby; T.A. Brown DNA from primitive maize landraces and archeological remains: implications for the domestication of maize and its expansion through South America, J. Archeol. Sci., Volume 30 (2003), pp. 901-908

[34] Y. Vigouroux; J. Glaubitz; M. Matsuoka; M.M. Goodman; G.J. Sanchez; J. Doebley Population structure and genetic diversity of new world maize races assessed by DNA microstellites, Am. J. Bot., Volume 95 (2008), pp. 1240-1253

[35] V.L. Lia; V.A. Confalonieri; N. Ratto; J.A. Camara-Hernandez; A.M. Miante Alzogaray; L. Poggio; T.A. Brown Microsatellite typing of ancient maize: insights into the history of agriculture in South America, Proc. R. Soc. London B, Volume 274 (2007), pp. 545-554

[36] P. Dubreuil; M.L. Warburton; M. Chastanet; D. Hoisington; A. Charcosset The origin of maize (Zea mays L.) in Europe as evidenced by microsatellite diversity, Maydica, Volume 51 (2006), pp. 281-291

[37] J.F. Doebley; M.M. Goodman; C.W. Stuber Exceptional genetic divergence of Northern Flint corn, Am. J. Bot., Volume 73 (1986), pp. 64-69

[38] B.D. Smith Origins of agriculture in Easter North America, Science, Volume 246 (1989), pp. 1566-1571

[39] J. Cartier Voyages au Canada, La Découverte, 1992 (1st edn 1545)

[40] G. Pressoir; J. Berthaud Patterns of population structure in maize landraces from the Central Valleys of Oaxaca in Mexico, Heredity, Volume 92 (2004), pp. 88-94

[41] G. Pressoir; J. Berthaud Population structure and strong divergent selection shape phenotypic diversification in maize landraces, Heredity, Volume 92 (2004), pp. 95-101

[42] J. Janick; G. Caneva The first images of maize in Europe, Maydica, Volume 50 (2005), pp. 71-80

[43] P.A. Matthiole Commentaires sur les six livres de Dioscoride, (G. Rouille, ed), Lyon, 1579 (1st Latin ed. 1570)

[44] A. Brandolini; A. Brandolini Maize introduction evolution and diffusion in Italy, Maydica, Volume 54 (2009), pp. 233-242

[45] J.J. Finan Maize in the great herbals, Ann. Mo. Bot. Gard., Volume 35 (1948), pp. 149-165

[46] L. Fuchs Commentaires très escellens de l’hystoire des plantes, Gazeau, 1549 (1st edn 1542)

[47] P.A. Matthioli Compendium de plantis omnibus, Venetiis: In Officina Valgrisiana, 1571

[48] P. Revilla; P. Soengas; M.E. Cartea; R.A. Malvar; A. Ordas Isozyme variability among European maize populations and the introduction of maize in Europe, Maydica, Volume 48 (2003), pp. 141-152

[49] M. Carraretto Histoires de maïs – d’une divinité amérindienne à ses avatars transgéniques, CTHS ed, Paris, 2005

[50] C. Rebourg; M. Chastanet; B. Gouesnard; C. Welcker; P. Dubreuil; A. Charcosset Maize introduction into Europe: the history reviewed in the light of molecular data, Theor. Appl. Genet., Volume 106 (2003), pp. 895-903

[51] H. Harisse The Discovery of North America, A critical, documentary and historic investigation with an essay on the early cartography of the New World, Henry Stevens and son, Eds, London, 1892

[52] E. Anderson; W.L. Brown The history of the common maize varieties of the United States corn belt, Agr. Hist., Volume 26 (1952), pp. 2-8

[53] E. Anderson; W.L. Brown Origin of corn belt maize and its genetic significance (J.W. Gowen, ed.), Heterosis, Iowa State College Press, 1952, pp. 124-148

[54] L. Camus-Kulandaivelu; J.B. Veyrieras; D. Madur; V. Combes; M. Fourmann; S. Barraud; P. Dubreuil; B. Gouesnard; D. Manicacci; A. Charcosset Maize adaptation to temperate climate: Relationship between population structure and polymorphism in the Dwarf8 gene, Genetics, Volume 172 (2006), pp. 2449-2463

[55] G.H. Shull The composition of a field of maize, Am. Breeders Assoc. Rep., Volume 4 (1908), pp. 296-301

[56] A. Cauderon. L’INRA dans l’amélioration des plantes des « Trente Glorieuses » à la lumière des préoccupations actuelles, in: L’Amélioration des Plantes, continuités et ruptures (http://www.inra.fr/gap/vie-scientifique/animation/colloque-AP2002/Cauderon.pdf) (INRA, ed); 2002.

[57] M. van de Wouw; T. van Hintum; C. Kik; R. van Treuren; B. Visser Genetic diversity trends in twentieth century crop cultivars: a meta analysis, Theor. Appl. Genet., Volume 120 (2010), pp. 1241-1252

[58] B. Gouesnard; C. Rebourg; C. Welcker; A. Charcosset Analysis of photoperiod sensitivity within a collection of tropical maize populations, Genet. Resour. Crop Evol., Volume 49 (2002), pp. 471-481

[59] E.S. Buckler; J.B. Holland; P.J. Bradbury; C.B. Acharya; P.J. Brown; C. Browne; E. Ersoz; S. Flint-Garcia; A. Garcia; J.C. Glaubitz; M.M. Goodman; C. Harjes; K. Guill; D.E. Kroon; S. Larsson; N.K. Lepak; H.H. Li; S.E. Mitchell; G. Pressoir; J.A. Peiffer; M.O. Rosas; T.R. Rocheford; M.C. Romay; S. Romero; S. Salvo; H.S. Villeda; H.S. da Silva; Q. Sun; F. Tian; N. Upadyayula; D. Ware; H. Yates; J.M. Yu; Z.W. Zhang; S. Kresovich; M.D. McMullen The genetic architecture of maize flowering time, Science, Volume 325 (2009), pp. 714-718

[60] S. Salvi; S. Castelletti; R. Tuberosa An updated consensus map for flowering time QTLs in maize, Maydica, Volume 54 (2009), pp. 501-512

[61] N.D. Coles; M.D. McMullen; P.J. Balint-Kurti; R.C. Pratt; J.B. Holland Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis, Genetics, Volume 184 (2010), pp. 799-812

[62] S. Salvi; G. Sponza; M. Morgante; D. Tomes; X. Niu; K.A. Fengler; R. Meeley; E.V. Ananiev; S. Svitashev; E. Bruggemann; B. Li; C.F. Hainey; S. Radovic; G. Zaina; J.A. Rafalski; S.V. Tingey; G.-H. Miao; R.L. Phillips; R. Tuberosa Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize, Proc. Natl. Acad. Sci. USA (2007), pp. 11376-11381

[63] S. Ducrocq; D. Madur; J.B. Veyrieras; L. Camus-Kulandaivelu; M. Kloiber-Maitz; T. Presterl; M. Ouzunova; D. Manicacci; A. Charcosset Key impact of Vgt1 on flowering time adaptation in maize: Evidence from association mapping and ecogeographical information, Genetics, Volume 178 (2008), pp. 2433-2437

[64] R.G. Thompson; J.P. Hart; H.J. Brumbach; R. Lustek Phytolith evidence for twenthieth-century B.P. maize in northern Iroquoia, Northeast Anthropology, Volume 68 (2004), pp. 25-40

[65] W.L. Merrill; R.J. Hard; J.B. Mabry; G.J. Fritz; K.R. Adams; J.R. Roney; A.C. MacWilliams The diffusion of maize to the southwestern United States and its impact, Proc. Natl. Acad. Sci. USA, Volume 106 (2009), pp. 21019-21026

[66] D.M. Pearsall Analysis of charred botanical remains from the Tutu site, US Virgin islands (E. Righter, ed.), The Tutu archaeological village site: a multidisciplinary case study in human adaptation, Poutledge, 2002, p. 109-134

[67] M.E.D. Pohl; D.R. Piperno; K.O. Pope; J.G. Jones Microfossil evidence for pre-Columbian maize dispersals in the neotropics from San Andres, Tabasco, Mexico, Proc. Natl. Acad. Sci. USA, Volume 104 (2007), pp. 6870-6875

[68] D.J. Rue Early agriculture and early postclassic maya occupation in western Honduras, Nature, Volume 326 (1987), pp. 285-286

[69] R.A. Dull An 8000-year record of vegetation, climate, and human disturbance from the Sierra de Apaneca El Salvador, Quatern. Res., Volume 61 (2004), pp. 159-167

[70] M.R. Arford; S.P. Horn Pollen evidence of the earliest maize agriculture in Costa Rica, J. Lat. Am. Geo., Volume 3 (2004), pp. 108-115

[71] R. Dickau; A.J. Ranere; R.G. Cooke Starch grain evidence for the preceramic dispersals of maize and root crops into tropical dry and humid forests of Panama, Proc. Natl. Acad. Sci. USA, Volume 104 (2007), pp. 3651-3656

[72] D.M. Pearsall; K. Chandler-Ezell; A. Chandler-Ezell Identifying maize in neotropical sediments and soils using cob phytoliths, J. Archaeol. Sci., Volume 30 (2003), pp. 611-627

[73] S. Zarrillo; D.M. Pearsall; J.S. Raymond; M.A. Tisdale; D.J. Quon Directly dated starch residues document early formative maize (Zea mays L.) in tropical Ecuador, Proc. Natl. Acad. Sci. USA, Volume 105 (2008), pp. 5006-5011

[74] L. Perry; D.H. Sandweiss; D.R. Piperno; K. Rademaker; M.A. Malpass; A. Umire P. de la Vera, Early maize agriculture and interzonal interaction in southern Peru, Nature, Volume 440 (2006), pp. 76-79

[75] J. Iriarte; I. Holst; O. Marozzi; C. Listopad; E. Alonso; A. Rinderknecht; J. Montana Evidence for cultivar adoption and emerging complexity during the mid-Holocene in the La Plata basin, Nature, Volume 432 (2004), pp. 614-617


Cité par

  • Leke Victor Aiyesa; Dietrich Kaufmann; Birgit Zumbach; Wolfgang Link; Stefan Scholten; Timothy Beissinger Individual plant genetics reveal the control of local adaptation in European maize landraces, BMC Biology, Volume 23 (2025) no. 1 | DOI:10.1186/s12915-025-02241-8
  • Justine Drouault; Carine Palaffre; Emilie J Millet; Jonas Rodriguez; Pierre Martre; Kristian Johnson; Boris Parent; Claude Welcker; Randall J Wisser; D-J de Koning A reaction norm for flowering time plasticity reveals physiological footprints of maize adaptation, G3: Genes, Genomes, Genetics, Volume 15 (2025) no. 7 | DOI:10.1093/g3journal/jkaf095
  • Margarita Takou; Kerstin Schulz; Markus G. Stetter Local Selection Shaped the Diversity of European Maize Landraces, Molecular Ecology (2025) | DOI:10.1111/mec.17720
  • Mohamed Dhia Eddine Hammami; Delphine Madur; Zayneb Kthiri; Agustin Galaretto; Stéphane D. Nicolas; Alain Charcosset; Valérie Combes; Chahine Karmous; Pedro Revilla; Muhammad Abdul Rehman Rashid Phylogenetic relationships and genetic diversity of Tunisian maize landraces, PLOS ONE, Volume 20 (2025) no. 1, p. e0316185 | DOI:10.1371/journal.pone.0316185
  • Rafal M. Gutaker; Michael D. Purugganan Adaptation and the Geographic Spread of Crop Species, Annual Review of Plant Biology, Volume 75 (2024) no. 1, p. 679 | DOI:10.1146/annurev-arplant-060223-030954
  • Noa Vazeux-Blumental; Domenica Manicacci; Maud Tenaillon The milpa, from Mesoamerica to present days, a multicropping traditional agricultural system serving agroecology, Comptes Rendus. Biologies, Volume 347 (2024) no. G1, p. 159 | DOI:10.5802/crbiol.164
  • Pia Guadalupe Dominguez; Angela Veronica Gutierrez; Monica Irina Fass; Carla Valeria Filippi; Pablo Vera; Andrea Puebla; Raquel Alicia Defacio; Norma Beatriz Paniego; Veronica Viviana Lia Genome‐Wide Diversity in Lowland and Highland Maize Landraces From Southern South America: Population Genetics Insights to Assist Conservation, Evolutionary Applications, Volume 17 (2024) no. 12 | DOI:10.1111/eva.70047
  • Yasmine Vanhevel; Astrid De Moor; Hilde Muylle; Ruben Vanholme; Wout Boerjan Breeding for improved digestibility and processing of lignocellulosic biomass in Zea mays, Frontiers in Plant Science, Volume 15 (2024) | DOI:10.3389/fpls.2024.1419796
  • Jian Li; Fan Xu; Shaozhong Song; Ji Qi A maize seed variety identification method based on improving deep residual convolutional network, Frontiers in Plant Science, Volume 15 (2024) | DOI:10.3389/fpls.2024.1382715
  • Libor Vobejda; Tereza Šálková; Yulia V. Erban Kochergina; Jan Altman; Zuzana Thomová Insight into the changes of European agriculture during the age of Baroque and enlightenment: Interdisciplinary survey of manor farmyard Švamberk (Czech Republic), Heliyon, Volume 10 (2024) no. 24, p. e40916 | DOI:10.1016/j.heliyon.2024.e40916
  • Jian Li; Fan Xu; Shaozhong Song; Qi Ji; Junling Liu Hyperspectral RGB Imaging Combined With Deep Learning for Maize Seed Variety Identification, IEEE Access, Volume 12 (2024), p. 184477 | DOI:10.1109/access.2024.3419006
  • Keling Tu; Shaozhe Wen; Yanan Xu; Hongju He; He Li; Rugen Xu; Baojian Guo; Chengming Sun; Riliang Gu; Qun Sun Non-destructive detection strategy of maize seed vigor based on seed phenotyping and the potential for accelerating breeding, Journal of Advanced Research (2024) | DOI:10.1016/j.jare.2024.12.022
  • Peng Yu; Chunhui Li; Meng Li; Xiaoming He; Danning Wang; Hongjie Li; Caroline Marcon; Yu Li; Sergio Perez-Limón; Xinping Chen; Manuel Delgado-Baquerizo; Robert Koller; Ralf Metzner; Dagmar van Dusschoten; Daniel Pflugfelder; Ljudmilla Borisjuk; Iaroslav Plutenko; Audrey Mahon; Marcio F. R. Resende; Silvio Salvi; Asegidew Akale; Mohanned Abdalla; Mutez Ali Ahmed; Felix Maximilian Bauer; Andrea Schnepf; Guillaume Lobet; Adrien Heymans; Kiran Suresh; Lukas Schreiber; Chloee M. McLaughlin; Chunjian Li; Manfred Mayer; Chris-Carolin Schön; Vivian Bernau; Nicolaus von Wirén; Ruairidh J. H. Sawers; Tianyu Wang; Frank Hochholdinger Seedling root system adaptation to water availability during maize domestication and global expansion, Nature Genetics, Volume 56 (2024) no. 6, p. 1245 | DOI:10.1038/s41588-024-01761-3
  • Asta Tamang; Mercy Wairimu Macharia; Leonardo Caproni; Mara Miculan; Svenja Mager; Jemal Seid Ahmed; Tashi Yangzome; Mario Enrico Pe; Matteo Dell'Acqua Genomic, climatic, and cultural diversity of maize landraces from the Himalayan Kingdom of Bhutan, PLANTS, PEOPLE, PLANET, Volume 6 (2024) no. 4, p. 965 | DOI:10.1002/ppp3.10513
  • Inês Gomes; Alberto González Remuiñán; Dulce Freire Exotic, traditional and hybrid landscapes: The subtle history of the Iberian Peninsula maize between ‘tradition’ and ‘modernity’, PLANTS, PEOPLE, PLANET, Volume 6 (2024) no. 5, p. 1047 | DOI:10.1002/ppp3.10458
  • J. P. Correia Multifractal analysis of maize and soybean DNA, Scientific Reports, Volume 14 (2024) no. 1 | DOI:10.1038/s41598-024-60722-2
  • Hang Xue; Xiping Xu; Yang Yang; Dongmei Hu; Guocheng Niu Rapid and Non-Destructive Prediction of Moisture Content in Maize Seeds Using Hyperspectral Imaging, Sensors, Volume 24 (2024) no. 6, p. 1855 | DOI:10.3390/s24061855
  • Noriza Khalid; Ákos Tarnawa; István Balla; Suhana Omar; Rosnani Abd Ghani; Márton Jolánkai; Zoltán Kende Combination Effect of Temperature and Salinity Stress on Germination of Different Maize (Zea mays L.) Varieties, Agriculture, Volume 13 (2023) no. 10, p. 1932 | DOI:10.3390/agriculture13101932
  • Kevser Cetin; Wolfram Mauser The Role of Recent Climate Change in Explaining the Statistical Yield Increase of Maize in Northern Bavaria—A Model Study, Agriculture, Volume 13 (2023) no. 7, p. 1370 | DOI:10.3390/agriculture13071370
  • Hang Xue; Yang Yang; Xiping Xu; Ning Zhang; Yaowen Lv Application of Near Infrared Hyperspectral Imaging Technology in Purity Detection of Hybrid Maize, Applied Sciences, Volume 13 (2023) no. 6, p. 3507 | DOI:10.3390/app13063507
  • Vlatko Galić; Violeta Anđelković; Natalija Kravić; Nikola Grčić; Tatjana Ledenčan; Antun Jambrović; Zvonimir Zdunić; Stéphane Nicolas; Alain Charcosset; Zlatko Šatović; Domagoj Šimić Genetic diversity and selection signatures in a gene bank panel of maize inbred lines from Southeast Europe compared with two West European panels, BMC Plant Biology, Volume 23 (2023) no. 1 | DOI:10.1186/s12870-023-04336-2
  • Vladimir Aćin; Milan Mirosavljević; Dragan Živančev; Bojan Jocković; Ljiljana Brbaklić; Goran Jaćimović Field management practices to produce nutritional and healthier main crops, Developing Sustainable and Health Promoting Cereals and Pseudocereals (2023), p. 137 | DOI:10.1016/b978-0-323-90566-4.00006-0
  • Xiang Ma; Yonglei Li; Lipengcheng Wan; Zexin Xu; Jiannong Song; Jinqiu Huang Classification of seed corn ears based on custom lightweight convolutional neural network and improved training strategies, Engineering Applications of Artificial Intelligence, Volume 120 (2023), p. 105936 | DOI:10.1016/j.engappai.2023.105936
  • Madeline M. Esquivel; Siddique I. Aboobucker; Walter P. Suza The impact of ‘framing’ in the adoption of GM crops, GM Crops Food, Volume 14 (2023) no. 1, p. 1 | DOI:10.1080/21645698.2023.2275723
  • Maria Platani; Owolabi Sokefun; Elias Bassil; Yiorgos Apidianakis Genetic engineering and genome editing in plants, animals and humans: Facts and myths, Gene, Volume 856 (2023), p. 147141 | DOI:10.1016/j.gene.2022.147141
  • Xiaokang Han; Dingyu Zhang; Haibo Hao; Yong Luo; Ziwei Zhu; Benke Kuai Transcriptomic Analysis of Three Differentially Senescing Maize (Zea mays L.) Inbred Lines upon Heat Stress, International Journal of Molecular Sciences, Volume 24 (2023) no. 12, p. 9782 | DOI:10.3390/ijms24129782
  • Yue Yu; Li‐Li Huang; Fang‐Sen Xue; Erik B. Dopman Partial reuse of circadian clock genes along parallel clines of diapause in two moth species, Molecular Ecology, Volume 32 (2023) no. 13, p. 3419 | DOI:10.1111/mec.16940
  • Félicien Akohoue; Silvia Koch; Bärbel Lieberherr; Bettina Kessel; Thomas Presterl; Thomas Miedaner; Lewis Lukens Effectiveness of introgression of resistance loci for Gibberella ear rot from two European flint landraces into adapted elite maize (Zea mays L.), PLOS ONE, Volume 18 (2023) no. 9, p. e0292095 | DOI:10.1371/journal.pone.0292095
  • Mariangela Arca; Brigitte Gouesnard; Tristan Mary‐Huard; Marie‐Christine Le Paslier; Cyril Bauland; Valérie Combes; Delphine Madur; Alain Charcosset; Stéphane D. Nicolas Genotyping of DNA pools identifies untapped landraces and genomic regions to develop next‐generation varieties, Plant Biotechnology Journal, Volume 21 (2023) no. 6, p. 1123 | DOI:10.1111/pbi.14022
  • Zeren Chen; Duomei Xue; Wei Guan; Jianbo Guo; Zhengbin Liu Performance Optimization of a Spoon Precision Seed Metering Device Based on a Maize Seed Assembly Model and Discrete Element Method, Processes, Volume 11 (2023) no. 11, p. 3076 | DOI:10.3390/pr11113076
  • Marcin W. Grzybowski; Ravi V. Mural; Gen Xu; Jonathan Turkus; Jinliang Yang; James C. Schnable A common resequencing‐based genetic marker data set for global maize diversity, The Plant Journal, Volume 113 (2023) no. 6, p. 1109 | DOI:10.1111/tpj.16123
  • Aurélien Beugnot; Tristan Mary-Huard; Cyril Bauland; Valerie Combes; Delphine Madur; Bernard Lagardère; Carine Palaffre; Alain Charcosset; Laurence Moreau; Julie B. Fievet Identifying QTLs involved in hybrid performance and heterotic group complementarity: new GWAS models applied to factorial and admixed diallel maize hybrid panels, Theoretical and Applied Genetics, Volume 136 (2023) no. 11 | DOI:10.1007/s00122-023-04431-w
  • Andrei Frolov; Anna Shchenikova; Oksana Selitskaya; Inna Grushevaya; Marianna Zhukovskaya; Nazar Fedoseev; Alexander Kuzmin; Elena Lastushkina; Dmitry Kurenshchikov; Valery Kurenshchikov; Miklós Tóth Asian corn borer (Ostrinia furnacalis Gn., Lepidoptera: Crambidae): Attraction to a bisexual lure and comparison of performance with synthetic sex pheromone, Acta Phytopathologica et Entomologica Hungarica, Volume 57 (2022) no. 2, p. 148 | DOI:10.1556/038.2022.00159
  • Leon Muntean; Andreea Ona; Ioana Berindean; Ionuț Racz; Sorin Muntean Maize Breeding: From Domestication to Genomic Tools, Agronomy, Volume 12 (2022) no. 10, p. 2365 | DOI:10.3390/agronomy12102365
  • Caroline Schmitz; Aline Nunes; Deise Munaro; Thaise Gerber; Marcelo Maraschin Metabolomics applied to the discovery of new bioactive pharmaceuticals in complex matrices, Bioactive Natural Products, Volume 74 (2022), p. 165 | DOI:10.1016/b978-0-323-91099-6.00006-2
  • J. Stephen Smith; Walter Trevisan; Alan McCunn; Wallace E. Huffman Global dependence on Corn Belt Dent maize germplasm: Challenges and opportunities, Crop Science, Volume 62 (2022) no. 6, p. 2039 | DOI:10.1002/csc2.20802
  • Garrett M. Janzen; María Rocío Aguilar‐Rangel; Carolina Cíntora‐Martínez; Karla Azucena Blöcher‐Juárez; Eric González‐Segovia; Anthony J. Studer; Daniel E. Runcie; Sherry A. Flint‐Garcia; Rubén Rellán‐Álvarez; Ruairidh J. H. Sawers; Matthew B. Hufford Demonstration of local adaptation in maize landraces by reciprocal transplantation, Evolutionary Applications, Volume 15 (2022) no. 5, p. 817 | DOI:10.1111/eva.13372
  • Semih Otles; Emine Nakilcioglu‐Tas Cereal‐Based Functional Foods, Functional Foods (2022), p. 55 | DOI:10.1002/9781119776345.ch3
  • Rex Bernardo Covariance between nonrelatives in maize, Heredity, Volume 129 (2022) no. 3, p. 155 | DOI:10.1038/s41437-022-00548-8
  • Aiju Meng; Daxing Wen; Chunqing Zhang Dynamic Changes in Seed Germination under Low-Temperature Stress in Maize, International Journal of Molecular Sciences, Volume 23 (2022) no. 10, p. 5495 | DOI:10.3390/ijms23105495
  • Xin Kong; You Li; Xinqi Liu A review of thermosensitive antinutritional factors in plant‐based foods, Journal of Food Biochemistry, Volume 46 (2022) no. 9 | DOI:10.1111/jfbc.14199
  • Mark Williams; Reinhold Leinfelder; Anthony D. Barnosky; Martin J. Head; Francine M. G. McCarthy; Alejandro Cearreta; Stephen Himson; Rachael Holmes; Colin N. Waters; Jan Zalasiewicz; Simon Turner; Mary McGann; Elizabeth A. Hadly; M. Allison Stegner; Paul Michael Pilkington; Jérôme Kaiser; Juan Carlos Berrio; Ian P. Wilkinson; Jens Zinke; Kristine L. Delong; Helen Coxall Planetary‐scale change to the biosphere signalled by global species translocations can be used to identify the Anthropocene, Palaeontology, Volume 65 (2022) no. 4 | DOI:10.1111/pala.12618
  • Keling Tu; Shaozhe Wen; Ying Cheng; Yanan Xu; Tong Pan; Haonan Hou; Riliang Gu; Jianhua Wang; Fengge Wang; Qun Sun A model for genuineness detection in genetically and phenotypically similar maize variety seeds based on hyperspectral imaging and machine learning, Plant Methods, Volume 18 (2022) no. 1 | DOI:10.1186/s13007-022-00918-7
  • Kevin Cianfaglione; Laura Longo; Raivo Kalle; Renata Sõukand; Airy Gras; Joan Vallès; Ingvar Svanberg; Anely Nedelcheva; Łukasz Łuczaj; Andrea Pieroni Archaic Food Uses of Large Graminoids in Agro Peligno Wetlands (Abruzzo, Central Italy) Compared With the European Ethnobotanical and Archaeological Literature, Wetlands, Volume 42 (2022) no. 7 | DOI:10.1007/s13157-022-01590-2
  • James F Hancock Dispersal of New World Crops into the Old World, World Agriculture Before and After 1492 (2022), p. 111 | DOI:10.1007/978-3-031-15523-9_9
  • Eduardo D. Munaiz; Kenneth A. Albrecht; Bernardo Ordas Genetic Diversity for Dual Use Maize: Grain and Second-Generation Biofuel, Agronomy, Volume 11 (2021) no. 2, p. 230 | DOI:10.3390/agronomy11020230
  • Yacine Diaw; Christine Tollon-Cordet; Alain Charcosset; Stéphane D. Nicolas; Delphine Madur; Joëlle Ronfort; Jacques David; Brigitte Gouesnard; Tzen-Yuh Chiang Genetic diversity of maize landraces from the South-West of France, PLOS ONE, Volume 16 (2021) no. 2, p. e0238334 | DOI:10.1371/journal.pone.0238334
  • Vojka Babić; Violeta Andjelkovic; Zoran Jovovic; Milosav Babic; Vladimir Vasic; Natalija Kravic Diversity Assessment of the Montenegrin Maize Landrace Gene Pool Maintained in Two Gene Banks, Plants, Volume 10 (2021) no. 8, p. 1503 | DOI:10.3390/plants10081503
  • Peter Civan; Renaud Rincent; Alice Danguy-Des-Deserts; Jean-Michel Elsen; Sophie Bouchet Population Genomics Along With Quantitative Genetics Provides a More Efficient Valorization of Crop Plant Genetic Diversity in Breeding and Pre-breeding Programs, Population Genomics: Crop Plants (2021), p. 225 | DOI:10.1007/13836_2021_97
  • Álvaro Aragón-Ruano The diffusion of maize in the Cantabrian region and its economic and demographic consequences during the Ancient Regime, Rural History, Volume 32 (2021) no. 1, p. 23 | DOI:10.1017/s0956793320000102
  • Felix P. Frey; Marion Pitz; Chris-Carolin Schön; Frank Hochholdinger Transcriptomic diversity in seedling roots of European flint maize in response to cold, BMC Genomics, Volume 21 (2020) no. 1 | DOI:10.1186/s12864-020-6682-1
  • Gaia Cortinovis; Valerio Di Vittori; Elisa Bellucci; Elena Bitocchi; Roberto Papa Adaptation to novel environments during crop diversification, Current Opinion in Plant Biology, Volume 56 (2020), p. 203 | DOI:10.1016/j.pbi.2019.12.011
  • Mrinal Samtiya; Rotimi E. Aluko; Tejpal Dhewa Plant food anti-nutritional factors and their reduction strategies: an overview, Food Production, Processing and Nutrition, Volume 2 (2020) no. 1 | DOI:10.1186/s43014-020-0020-5
  • Paweł Sowiński; Jan Fronk; Maciej Jończyk; Marcin Grzybowski; Piotr Kowalec; Alicja Sobkowiak Maize Response to Low Temperatures at the Gene Expression Level: A Critical Survey of Transcriptomic Studies, Frontiers in Plant Science, Volume 11 (2020) | DOI:10.3389/fpls.2020.576941
  • Yongsheng Li; Xingrong Wang; Yue Li; Yanjun Zhang; Zuowang Gou; Xusheng Qi; Jinlin Zhang Transcriptomic Analysis Revealed the Common and Divergent Responses of Maize Seedling Leaves to Cold and Heat Stresses, Genes, Volume 11 (2020) no. 8, p. 881 | DOI:10.3390/genes11080881
  • Thomas J. Orton Breeding Methods for Outcrossing Plant Species: I. History of Corn Breeding and Open Pollinated Populations, Horticultural Plant Breeding (2020), p. 275 | DOI:10.1016/b978-0-12-815396-3.00015-9
  • Mara Lisa Alves; Andreia Bento-Silva; Bruna Carbas; Daniel Gaspar; Manuel Paulo; Cláudia Brites; Pedro Mendes-Moreira; Carla Moita Brites; Maria do Rosário Bronze; Marcos Malosetti; Fred van Eeuwijk; Maria Carlota Vaz Patto Alleles to Enhance Antioxidant Content in Maize—A Genome-Wide Association Approach, Journal of Agricultural and Food Chemistry, Volume 68 (2020) no. 13, p. 4051 | DOI:10.1021/acs.jafc.9b07190
  • Georg Haberer; Nadia Kamal; Eva Bauer; Heidrun Gundlach; Iris Fischer; Michael A. Seidel; Manuel Spannagl; Caroline Marcon; Alevtina Ruban; Claude Urbany; Adnane Nemri; Frank Hochholdinger; Milena Ouzunova; Andreas Houben; Chris-Carolin Schön; Klaus F. X. Mayer European maize genomes highlight intraspecies variation in repeat and gene content, Nature Genetics, Volume 52 (2020) no. 9, p. 950 | DOI:10.1038/s41588-020-0671-9
  • Sara Castelletti; Aude Coupel-Ledru; Italo Granato; Carine Palaffre; Llorenç Cabrera-Bosquet; Chiara Tonelli; Stéphane D. Nicolas; François Tardieu; Claude Welcker; Lucio Conti; Juliette de Meaux Maize adaptation across temperate climates was obtained via expression of two florigen genes, PLOS Genetics, Volume 16 (2020) no. 7, p. e1008882 | DOI:10.1371/journal.pgen.1008882
  • A. Penaud; A. Ganne; F. Eynaud; C. Lambert; P.O. Coste; M. Herlédan; M. Vidal; J. Goslin; P. Stéphan; G. Charria; Y. Pailler; M. Durand; J. Zumaque; M. Mojtahid Oceanic versus continental influences over the last 7 kyrs from a mid-shelf record in the northern Bay of Biscay (NE Atlantic), Quaternary Science Reviews, Volume 229 (2020), p. 106135 | DOI:10.1016/j.quascirev.2019.106135
  • Michael Kempf; Rüdiger Glaser Tracing Real-Time Transnational Hydrologic Sensitivity and Crop Irrigation in the Upper Rhine Area over the Exceptional Drought Episode 2018–2020 Using Open Source Sentinel-2 Data, Water, Volume 12 (2020) no. 12, p. 3298 | DOI:10.3390/w12123298
  • Emily B Josephs; Jeremy J Berg; Jeffrey Ross-Ibarra; Graham Coop Detecting Adaptive Differentiation in Structured Populations with Genomic Data and Common Gardens, Genetics, Volume 211 (2019) no. 3, p. 989 | DOI:10.1534/genetics.118.301786
  • Atul Bhargava; Shilpi Srivastava Cereals, Participatory Plant Breeding: Concept and Applications (2019), p. 129 | DOI:10.1007/978-981-13-7119-6_6
  • Carson Andorf; William D. Beavis; Matthew Hufford; Stephen Smith; Walter P. Suza; Kan Wang; Margaret Woodhouse; Jianming Yu; Thomas Lübberstedt Technological advances in maize breeding: past, present and future, Theoretical and Applied Genetics, Volume 132 (2019) no. 3, p. 817 | DOI:10.1007/s00122-019-03306-3
  • Pedro C. Brauner; Wolfgang Schipprack; H. Friedrich Utz; Eva Bauer; Manfred Mayer; Chris-Carolin Schön; Albrecht E. Melchinger Testcross performance of doubled haploid lines from European flint maize landraces is promising for broadening the genetic base of elite germplasm, Theoretical and Applied Genetics, Volume 132 (2019) no. 6, p. 1897 | DOI:10.1007/s00122-019-03325-0
  • Christoph von Redwitz; Bärbel Gerowitt; Jörg Ewald Maize‐dominated crop sequences in northern Germany: Reaction of the weed species communities, Applied Vegetation Science, Volume 21 (2018) no. 3, p. 431 | DOI:10.1111/avsc.12384
  • Aude Darracq; Clémentine Vitte; Stéphane Nicolas; Jorge Duarte; Jean-Philippe Pichon; Tristan Mary-Huard; Céline Chevalier; Aurélie Bérard; Marie-Christine Le Paslier; Peter Rogowsky; Alain Charcosset; Johann Joets Sequence analysis of European maize inbred line F2 provides new insights into molecular and chromosomal characteristics of presence/absence variants, BMC Genomics, Volume 19 (2018) no. 1 | DOI:10.1186/s12864-018-4490-7
  • M. Orsucci; P. Audiot; F. Dorkeld; A. Pommier; M. Vabre; B. Gschloessl; S. Rialle; D. Severac; D. Bourguet; R. Streiff Larval transcriptomic response to host plants in two related phytophagous lepidopteran species: implications for host specialization and species divergence, BMC Genomics, Volume 19 (2018) no. 1 | DOI:10.1186/s12864-018-4589-x
  • Eric Lombaert; Marc Ciosi; Nicholas J. Miller; Thomas W. Sappington; Aurélie Blin; Thomas Guillemaud Colonization history of the western corn rootworm (Diabrotica virgifera virgifera) in North America: insights from random forest ABC using microsatellite data, Biological Invasions, Volume 20 (2018) no. 3, p. 665 | DOI:10.1007/s10530-017-1566-2
  • Sanja Mikić; Ljiljana Brbaklić; Dušan Stanisavljević; Ankica Kondić-Špika; Goran Bekavac; Bojan Mitrović; Dragana Trkulja; Milan Mirosavljević Molecular diversity and microsatellite polymorphism of modern maize hybrids, Ratarstvo i povrtarstvo, Volume 55 (2018) no. 2, p. 95 | DOI:10.5937/ratpov55-17535
  • Guiyan Yang; Qingyan Wang; Chen Liu; Xiaobin Wang; Shuxiang Fan; Wenqian Huang Rapid and visual detection of the main chemical compositions in maize seeds based on Raman hyperspectral imaging, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Volume 200 (2018), p. 186 | DOI:10.1016/j.saa.2018.04.026
  • Johann Joets; Clémentine Vitte; Alain Charcosset Draft Assembly of the F2 European Maize Genome Sequence and Its Comparison to the B73 Genome Sequence: A Characterization of Genotype-Specific Regions, The Maize Genome (2018), p. 3 | DOI:10.1007/978-3-319-97427-9_1
  • Dongsheng Guo; Qibing Zhu; Min Huang; Ya Guo; Jianwei Qin Model updating for the classification of different varieties of maize seeds from different years by hyperspectral imaging coupled with a pre-labeling method, Computers and Electronics in Agriculture, Volume 142 (2017), p. 1 | DOI:10.1016/j.compag.2017.08.015
  • Mara L. Alves; Cláudia Brites; Manuel Paulo; Bruna Carbas; Maria Belo; Pedro M. R. Mendes-Moreira; Carla Brites; Maria do Rosário Bronze; Jerko Gunjača; Zlatko Šatović; Maria C. Vaz Patto Setting Up Decision-Making Tools toward a Quality-Oriented Participatory Maize Breeding Program, Frontiers in Plant Science, Volume 8 (2017) | DOI:10.3389/fpls.2017.02203
  • Jean-Tristan Brandenburg; Tristan Mary-Huard; Guillem Rigaill; Sarah J. Hearne; Hélène Corti; Johann Joets; Clémentine Vitte; Alain Charcosset; Stéphane D. Nicolas; Maud I. Tenaillon; Nathan M. Springer Independent introductions and admixtures have contributed to adaptation of European maize and its American counterparts, PLOS Genetics, Volume 13 (2017) no. 3, p. e1006666 | DOI:10.1371/journal.pgen.1006666
  • Brigitte Gouesnard; Sandra Negro; Amélie Laffray; Jeff Glaubitz; Albrecht Melchinger; Pedro Revilla; Jesus Moreno-Gonzalez; Delphine Madur; Valérie Combes; Christine Tollon-Cordet; Jacques Laborde; Dominique Kermarrec; Cyril Bauland; Laurence Moreau; Alain Charcosset; Stéphane Nicolas Genotyping-by-sequencing highlights original diversity patterns within a European collection of 1191 maize flint lines, as compared to the maize USDA genebank, Theoretical and Applied Genetics, Volume 130 (2017) no. 10, p. 2165 | DOI:10.1007/s00122-017-2949-6
  • A. Larièpe; L. Moreau; J. Laborde; C. Bauland; S. Mezmouk; L. Décousset; T. Mary-Huard; J. B. Fiévet; A. Gallais; P. Dubreuil; A. Charcosset General and specific combining abilities in a maize (Zea mays L.) test-cross hybrid panel: relative importance of population structure and genetic divergence between parents, Theoretical and Applied Genetics, Volume 130 (2017) no. 2, p. 403 | DOI:10.1007/s00122-016-2822-z
  • Min Huang; Chujie He; Qibing Zhu; Jianwei Qin Maize Seed Variety Classification Using the Integration of Spectral and Image Features Combined with Feature Transformation Based on Hyperspectral Imaging, Applied Sciences, Volume 6 (2016) no. 6, p. 183 | DOI:10.3390/app6060183
  • Mariana Bracco; Jimena Cascales; Julián Cámara Hernández; Lidia Poggio; Alexandra M. Gottlieb; Verónica V. Lia Dissecting maize diversity in lowland South America: genetic structure and geographic distribution models, BMC Plant Biology, Volume 16 (2016) no. 1 | DOI:10.1186/s12870-016-0874-5
  • Laëtitia Riva-Roveda; Brigitte Escale; Catherine Giauffret; Claire Périlleux Maize plants can enter a standby mode to cope with chilling stress, BMC Plant Biology, Volume 16 (2016) no. 1 | DOI:10.1186/s12870-016-0909-y
  • F de Mol; C von Redwitz; B Gerowitt; Matt Liebman Weed species composition of maize fields in Germany is influenced by site and crop sequence, Weed Research, Volume 55 (2015) no. 6, p. 574 | DOI:10.1111/wre.12169
  • Sandra Unterseer; Eva Bauer; Georg Haberer; Michael Seidel; Carsten Knaak; Milena Ouzunova; Thomas Meitinger; Tim M Strom; Ruedi Fries; Hubert Pausch; Christofer Bertani; Alessandro Davassi; Klaus FX Mayer; Chris-Carolin Schön A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array, BMC Genomics, Volume 15 (2014) no. 1 | DOI:10.1186/1471-2164-15-823
  • Héloïse Giraud; Christina Lehermeier; Eva Bauer; Matthieu Falque; Vincent Segura; Cyril Bauland; Christian Camisan; Laura Campo; Nina Meyer; Nicolas Ranc; Wolfgang Schipprack; Pascal Flament; Albrecht E Melchinger; Monica Menz; Jesús Moreno-González; Milena Ouzunova; Alain Charcosset; Chris-Carolin Schön; Laurence Moreau Linkage Disequilibrium with Linkage Analysis of Multiline Crosses Reveals Different Multiallelic QTL for Hybrid Performance in the Flint and Dent Heterotic Groups of Maize, Genetics, Volume 198 (2014) no. 4, p. 1717 | DOI:10.1534/genetics.114.169367
  • Anthony D. Barnosky Palaeontological evidence for defining the Anthropocene, Geological Society, London, Special Publications, Volume 395 (2014) no. 1, p. 149 | DOI:10.1144/sp395.6
  • Réjane Streiff; Brigitte Courtois; Serge Meusnier; Denis Bourguet Genetic mapping of two components of reproductive isolation between two sibling species of moths, Ostrinia nubilalis and O. scapulalis, Heredity, Volume 112 (2014) no. 4, p. 370 | DOI:10.1038/hdy.2013.113
  • Thomas Miedaner Mais – Goldene Ernte, Kulturpflanzen (2014), p. 151 | DOI:10.1007/978-3-642-55293-9_7
  • Elke K. Arendt; Emanuele Zannini Maizes, Cereal Grains for the Food and Beverage Industries (2013), p. 67 | DOI:10.1533/9780857098924.67
  • Guilherme Loss-Morais; Andreia Carina Turchetto-Zolet; Matheus Etges; Alexandro Cagliari; Ana Paula Körbes; Felipe dos Santos Maraschin; Márcia Margis-Pinheiro; Rogério Margis Analysis of castor bean ribosome-inactivating proteins and their gene expression during seed development, Genetics and Molecular Biology, Volume 36 (2013) no. 1, p. 74 | DOI:10.1590/s1415-47572013005000005
  • Alexander Strigens; Wolfgang Schipprack; Jochen C. Reif; Albrecht E. Melchinger; Randall P. Niedz Unlocking the Genetic Diversity of Maize Landraces with Doubled Haploids Opens New Avenues for Breeding, PLoS ONE, Volume 8 (2013) no. 2, p. e57234 | DOI:10.1371/journal.pone.0057234
  • Hermine Alexandre; Sergine Ponsard; Denis Bourguet; Renaud Vitalis; Philippe Audiot; Sandrine Cros-Arteil; Réjane Streiff; Casper Breuker When History Repeats Itself: Exploring the Genetic Architecture of Host-Plant Adaptation in Two Closely Related Lepidopteran Species, PLoS ONE, Volume 8 (2013) no. 7, p. e69211 | DOI:10.1371/journal.pone.0069211
  • Sophie Bouchet; Bertrand Servin; Pascal Bertin; Delphine Madur; Valérie Combes; Fabrice Dumas; Dominique Brunel; Jacques Laborde; Alain Charcosset; Stéphane Nicolas; James C. Nelson Adaptation of Maize to Temperate Climates: Mid-Density Genome-Wide Association Genetics and Diversity Patterns Reveal Key Genomic Regions, with a Major Contribution of the Vgt2 (ZCN8) Locus, PLoS ONE, Volume 8 (2013) no. 8, p. e71377 | DOI:10.1371/journal.pone.0071377
  • F. Guillon; C. Larré; F. Petipas; A. Berger; J. Moussawi; H. Rogniaux; A. Santoni; L. Saulnier; F. Jamme; M. Miquel; L. Lepiniec; B. Dubreucq A comprehensive overview of grain development in Brachypodium distachyon variety Bd21, Journal of Experimental Botany, Volume 63 (2012) no. 2, p. 739 | DOI:10.1093/jxb/err298
  • Tatiana Zerjal; Agnès Rousselet; Corinne Mhiri; Valérie Combes; Delphine Madur; Marie-Angèle Grandbastien; Alain Charcosset; Maud I. Tenaillon Maize genetic diversity and association mapping using transposable element insertion polymorphisms, Theoretical and Applied Genetics, Volume 124 (2012) no. 8, p. 1521 | DOI:10.1007/s00122-012-1807-9

Cité par 93 documents. Sources : Crossref


Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: