Plan
Comptes Rendus

Account / Revue
Amino acid-based surfactants
Comptes Rendus. Chimie, Volume 7 (2004) no. 6-7, pp. 583-592.

Résumés

There is a pressing need for developing efficiently surfactants that are biodegradable and biocompatible. Surfactant molecules from renewable raw materials that mimic natural lipoamino acids are one of the preferred choices for food, pharmaceutical and cosmetic applications. Given their natural and simple structure they show low toxicity and quick biodegradation. The value of amino acids and vegetable oil derivatives as raw materials for the preparation of surfactants was recognized as soon as they were discovered early in the last century. The combination of polar amino acids/peptides (hydrophilic moiety) and non-polar long-chain compounds (hydrophobic moiety) for building up the amphiphilic structure has produced molecules with high surface activity. Our group has a wide experience in synthesis (chemical, enzymatic or, usually, by a combination of both methodologies) of amino acid-based surfactants obtained from the combination of natural saturated fatty acids, alcohols and amines with different amino acid head groups through ester and amide linkages. Thus, saturated single-chain, double-chain, and gemini surfactants of different ionic character have been found to be in all cases highly biodegradable, with low toxicity, ecotoxicity and irritation effects. Water solubility and self-aggregation properties were directly associated with the chemical structure of the molecule and only cationic lipoamino acids possessed antimicrobial activity. .

De nos jours, il existe un besoin urgent de développer des molécules tensioactives efficaces qui soient biodégradables et biocompatibles. Les molécules tensioactives provenant de matériaux naturels renouvelables, qui ressemblent à des acides lipoamino acides, sont favorites pour les applications alimentaires, pharmaceutiques et cosmétiques. Du fait de leur structure naturelle et simple, elles présentent une faible toxicité et une rapide biodégradation. Le potentiel des acides aminés et des dérivés d'huiles végétales comme matières premières pour la préparation de tensioactifs est connu depuis leur découverte au début du siècle passé. La combinaison d'acides aminés polaires avec des peptides (réseau hydrophile) et des composés à longue chaîne non polaire (réseau hydrophobe) pour construire la structure amphiphile a permis de produire des molécules d'activité superficielle élevée. Notre groupe possède une grande expérience dans la synthèse (chimique, enzymatique, ou même par la combinaison de ces deux méthodologies) des tensioactifs dérivés d'acides aminés obtenus par la combinaison d'acides gras naturels saturés, d'alcools et d'amines avec différents groupes acides aminés au travers de liaisons ester et amide. De cette manière, les tensioactifs saturés à chaîne simple, chaîne double et géminale possédant différents caractères ioniques présentent, dans tous les cas, une biodégradabilité élevée, avec une faible toxicité, une faible écotoxicité et peu d'effets d'irradiation. Les propriétés de solubilité dans l'eau et d'auto-agrégation ont été directement associées avec la structure chimique de la molécule ; seul l'acide lipoaminé cationique possède une activité microbiologique. .

Métadonnées
Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.1016/j.crci.2004.02.009
Keywords: Amino acid-based surfactants, Lipoamino acids, Gemini surfactant, Acyl glycerides, Surface active properties, Toxicity, Ecotoxicity
Mots-clés : Tensioactif dérivé d'acide aminé, Acides lipoaminés, Tensioactif gemini, Acyle glycérides, propriétés d'activité superficielle, Toxicité, Écotoxicité

María Rosa Infante 1 ; Lourdes Pérez 1 ; Aurora Pinazo 1 ; Pere Clapés 1 ; María Carmen Morán 1 ; Marta Angelet 1 ; María Teresa García 1 ; María Pilar Vinardell 2

1 Instituto de Investigaciones Químicas y Ambientales de Barcelona, C.S.I.C. Jordi Girona 18–26, 08034 Barcelona, Spain
2 Facultad de Farmacia, Universidad de Barcelona, Unidad Asociada de Investigacion del CSIC, Avd. Juan XXIII s/n. Edificio B 3a planta, 08028 Barcelona, Spain
@article{CRCHIM_2004__7_6-7_583_0,
     author = {Mar{\'\i}a Rosa Infante and Lourdes P\'erez and Aurora Pinazo and Pere Clap\'es and Mar{\'\i}a Carmen Mor\'an and Marta Angelet and Mar{\'\i}a Teresa Garc{\'\i}a and Mar{\'\i}a Pilar Vinardell},
     title = {Amino acid-based surfactants},
     journal = {Comptes Rendus. Chimie},
     pages = {583--592},
     publisher = {Elsevier},
     volume = {7},
     number = {6-7},
     year = {2004},
     doi = {10.1016/j.crci.2004.02.009},
     language = {en},
}
TY  - JOUR
AU  - María Rosa Infante
AU  - Lourdes Pérez
AU  - Aurora Pinazo
AU  - Pere Clapés
AU  - María Carmen Morán
AU  - Marta Angelet
AU  - María Teresa García
AU  - María Pilar Vinardell
TI  - Amino acid-based surfactants
JO  - Comptes Rendus. Chimie
PY  - 2004
SP  - 583
EP  - 592
VL  - 7
IS  - 6-7
PB  - Elsevier
DO  - 10.1016/j.crci.2004.02.009
LA  - en
ID  - CRCHIM_2004__7_6-7_583_0
ER  - 
%0 Journal Article
%A María Rosa Infante
%A Lourdes Pérez
%A Aurora Pinazo
%A Pere Clapés
%A María Carmen Morán
%A Marta Angelet
%A María Teresa García
%A María Pilar Vinardell
%T Amino acid-based surfactants
%J Comptes Rendus. Chimie
%D 2004
%P 583-592
%V 7
%N 6-7
%I Elsevier
%R 10.1016/j.crci.2004.02.009
%G en
%F CRCHIM_2004__7_6-7_583_0
María Rosa Infante; Lourdes Pérez; Aurora Pinazo; Pere Clapés; María Carmen Morán; Marta Angelet; María Teresa García; María Pilar Vinardell. Amino acid-based surfactants. Comptes Rendus. Chimie, Volume 7 (2004) no. 6-7, pp. 583-592. doi : 10.1016/j.crci.2004.02.009. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2004.02.009/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

Surfactants are one of the most representative chemical products that are consumed in large quantities every day on a worldwide scale. Since it is known that surface-active compounds can adversely affect the aquatic environment, the biodegradability and biocompatibility of surfactants have become almost as important as their functional performance to the consumer. Because of this, there is a pressing need for developing efficient surfactants that are biodegradable and biocompatible.

Surfactants of this kind can be obtained by designing molecules that mimic natural amphiphilic structures (e.g., phospholipids [1], Nα-acyl amino acids [2], alkyl-glucosides [3]). Surfactant molecules from renewable raw materials that mimic natural lipoamino acids are one of the preferred choices for food, pharmaceutical and cosmetic applications. Given their natural and simple structure, they show low toxicity and quick biodegradation [4]. They can be produced by biotechnological and chemical methods using renewable raw materials such as amino acids and vegetable oils [5–11]. The value of amino acids as raw materials for the preparation of surfactants was recognized as soon as they were discovered early in the last century [12]. Initially they were used as preservatives for medical and cosmetic applications. Moreover, they were found to be active against various disease-causing bacteria, tumours, and viruses [13–15]. The combination of polar amino acids/peptides (hydrophilic moiety) and non-polar long chain compounds (hydrophobic moiety) for building up the amphiphilic structure has produced molecules with high surface activity. There is a large variety of amino acid/peptide structures. Moreover, the fatty acid chains can vary in their structure, length and number. These facts explain their wide structural diversity and different physicochemical and biological properties [4,9,16,17].

The amino acid or peptide moiety determines the main differences of adsorption, aggregation and biological activity between the amino acid/peptide-based surfactants. Hence, cationic, anionic, non-ionic and amphoteric surfactants can be obtained depending on the free functional groups. Further modification of these groups allows a fine-tuning of their properties to meet almost every particular application.

The amino acids and long aliphatic chains can be combined to each other to generate three main structures (Scheme 1) of amino acid-based surfactants, namely linear or single chain I, dimeric or gemini II and glycerolipid-like structures III. Linear structures I consist of an amino acid bearing at least one hydrophobic tail. Gemini or dimeric are amphipathic structures II with two polar heads (i.e., two amino acids) and two hydrophobic tails per molecule. Glycerolipid-like structures III can be considered analogues of mono-, diglycerides and phospholipids. They consist of one polar head and one or two hydrophobic moieties linked together through a glycerol skeleton.

Scheme 1

Structures of amino acid-based surfactants. The amino acid constitutes the polar head of surfactant. The hydrocarbon alkyl chain constitutes the hydrophobic moiety.

Our group has a wide experience on the synthesis by means of chemical, enzymatic or, usually, by a combination of both methodologies, of amino acid-based surfactants obtained from the condensation of natural saturated fatty acids, alcohols, amines and acyl glyceride derivatives with different amino acid head groups through ester and amide linkages [18–30]. Thus, saturated single-chain, double-chain, gemini and amino acid glycerolipid conjugate surfactants derived from amino acids of different ionic character have resulted to be, in all cases, highly biodegradable, with low toxicity, ecotoxicity and irritation effects. Water solubility and self-aggregation properties were directly associated with the chemical structure of the molecule. Being the cationic lipoamino acids the most antimicrobial active compounds. In this communication, we report some structure–activity relationship studies of amino acid-based surfactants of single chain and gemini structure for adsorption, self-assembling, and biological applications.

2 Single-chain amino acid/peptide surfactants

2.1 Synthesis

Linear amino acid surfactants are natural α-amino acids linked to long aliphatic chains through the α-amino, α-COOH or side chain groups (Scheme 2).

Scheme 2

Different types of linkages between an amino acid and a hydrophobic alkyl chain: acyl-bond derivatives (1), alkyl-bond derivatives (2), amide-bond derivatives (3) and ester-bond derivatives (4).

Thus, fatty acids or alkyl halides can react with amino groups yielding the corresponding N-acyl and N-alkyl derivatives (Scheme 2, compounds 1 and 2), respectively. Alternatively, the carboxyl group of the amino acid can be condensed with alkyl amines or aliphatic alcohols to give N-alkyl amides and esters (Scheme 2, compounds 3 and 4) respectively.

Among the different types of linkages between the long aliphatic chain and the amino acid, the N-acyl (Scheme 3, series 1), N-alkyl amides (Scheme 3, series 2) and O- alkyl esters (Scheme 3, series 3) of arginine have attracted much interest to our group due to their low toxicity and high biodegradability in combination with their antimicrobial activity.

Scheme 3

Chemical structure of single-chain arginine-based cationic surfactants.

The N-acylation of the amino terminal arginine (series 1) was prepared by condensation of fatty acids to arginine methyl ester hydrochloride using classical chemical methods [4]. The application of biotechnological procedures was not efficient for these compounds [30]. Series 2 was at first prepared by chemical procedures [25], however papain from Carica papaya latex was found to be a suitable catalyst for the formation of amide (series 2) and ester bonds (series 3) between Cbz–Arg–OMe and various long-chain alkyl amines and fatty alcohols [26]. In all cases, papain deposited onto polyamide was found to be the best biocatalyst configuration. The preparation of arginine alkyl esters was carried out in solvent free systems using the same alcohol reagent. Both series were enzymatic synthesized at multigram scale with a purity higher than 99%.

N-alkyl amide and ester derivatives of Nα-protected amino acids have also been prepared by lipases. In a study carried out with Candida Antarctica and Rhizomucor miehei lipases, it was found that these enzymes could readily catalyse the condensation of a number of Nα-Cbz-amino acids with α,ω-alkyldiamines or fatty alcohols [31].

2.2 Properties

Our group has reported that long-chain Nα-acyl arginine methyl ester compound (series 1, Scheme 1) are cationic surfactants with satisfactory toxicity profile, high biodegradability and a surface activity comparable to that of conventional long-chain quaternary ammonium salts. We have demonstrated that the morphology of their micelle aggregates and lyotropic phases depends on the hydrophobic moiety, temperature, composition and electrolyte content in the system. As a result, we have found that compounds of series 1 show a rich and unusual phase behaviour [32–34]. For instance, reversed vesicles (dispersion of lamellar liquid crystals in non-polar media) with biocompatible properties occurred in the lecithin–LAM/squalane system [35]. The PAM homologue was the only compound that showed lamellar lyotropic liquid crystals in the binary water/surfactant system [34]. These properties make them good alternatives for a wide range of industrial applications in the personal care, pharmaceutical and food sectors as well as in the design and synthesis of biomaterials. Furthermore, the arginine residue gives antimicrobial activity to the amphipathic molecule, a valuable property for a biocompatible surfactant [36].

Compared to series 1 the series 2 and 3 (Scheme 3) have two positive charged groups in the hydrophilic moiety, one in the primary amine and a second in the guanidine function. From the surface tension/concentration curves at 25 °C the critical micelle concentration which is associated to the hydrophobicity of the molecule (CMC), the maximum surface excess concentration at the air/aqueous solution interface (Γm) and the area per molecule whose value indicates the minimum area per surfactant molecule at the air/aqueous solution interface (Amin) were calculated. Table 1 summarises the surface parameters of the three series of compounds using the Gibbs adsorption equation [37]. In all cases they have the ability to decrease the surface tension of water until a constant value, γCMC and show a clear CMC in the surface tension/log C curves in the millimolar range. This indicates that they can be classified as surfactants with a surface activity similar to that of conventional cationic ones. Table 1 shows that the CMC depends on the straight alkyl chain and the nature of the hydrophilic moiety. For the three series of surfactants the larger the number of methylene groups in the alkyl chain the lower the CMC as it would be expected from the increase in the hydrophobic character of the molecule. The smaller the Amin, the more effective is its adsorption at the interfaces. We found that the Amin values for series 2 and 3 (62–114 × l0–2 nm2, and 96–122 × l0–2 nm2 respectively) were higher than that for the series 1 with the same alkyl chain length (67–62 × 10–2 nm2). This result indicates that the new molecules are less packed at the interface than those of series 1. The two charged groups in series 2 and 3 tend to spread them out on the interface due to an increase in the inter–intramolecular electrostatic repulsion forces.

Table 1

Surface active properties of single chain surfactants from arginine at 25°C [32–34,49]

CompoundγcmcaCMCbΓmcAmind
(10–3 N m–1)(10–3 mol dm3)(1014 mol m–2)(102 nm2)
CAMe4016
LAMe325.867
MAMe32262
ACAf35261.7962
ALAf371.81.2490
AMAf330.70.97114
AOEg35381.1596
ACEg34131.5472
ALEg3050.91122

a Surface tension at the critical micelle concentration.

b Critical micelle concentration.

c Maximum surface excess concentration at the air/aqueous solution interface.

d Minimum area per surfactant molecule at the air/aqueous solution interface.

e Compounds of series 1 (Scheme 3).

f Compounds of series 2 (Scheme 3).

g Compounds of series 3 (Scheme 3).

The application of synthetic acyl amino acid/peptide vesicles as drug carriers as well as for the preparation of functional liposomes with lipopeptide ligands have been examined by several authors in the last years [38–39]. Vesicles of long-aliphatic-chain N-acyl amino acids showed encapsulation efficiencies for solutes comparable to that of conventional liposomes of lecithin. Recently, a new technology has emerged for the transfer of foreign DNA into cells forming non-toxic hydrophobic ion-paired complexes between long-chain arginine alkyl esters (Scheme 1, series III) with DNA [40]. Lipoamino acids are also particularly attractive as antiviral agents. Certain acyl amino acid derivatives have been found to produce inhibition on influenza neuraminidase [41]. A number of Nα-palmitoylated amino acids/peptides have been incorporated into model membranes affecting the transition temperature between the bilayer to hexagonal aggregation, a property associated with antiviral activity against cantell strain of Sendai virus (parainfluenza type 1) [42].

One important milestone in our research is the design and development of new amino acid-based surfactants with antimicrobial properties, which mimic natural amphiphilic cationic peptides [20,43]. To this end, Lys and Arg derivatives of long chain Nα-acyl, COO-ester and N-alkyl amide have been prepared. In particular, the Nα-acyl arginine methyl ester derivatives series 1 (Scheme 2) have turned out to be an important class of cationic surface active compounds with a wide bactericidal activity, high biodegradability and low toxicity profile. The antimicrobial activities were determined ‘in vitro’ on the basis of the minimum inhibitory concentration (MIC) values, defined as the lowest concentration of antimicrobial agent that inhibits the development of visible growth after 24 h of incubation at 37 °C. We have shown that essential structural factors for their antimicrobial activity include both the length of the fatty residue (akin with their solubility and surface activity) and the presence of the protonated guanidine function [43,44]. Amphoteric lipopeptide surfactants with antimicrobial activity comparable to those of LAM were found when neutral Gly or Phe amino acids were condensed to the Nα-lauroyl arginine [9]. More interestingly, condensation of a Nα-acyl-arginine residue to an acid-hydrolysed collagen gave rise to a family of amphoteric protein-based surfactants with antimicrobial activity being the homologue of C14 carbon atoms the most active [9]. The activity of all these amphoteric N-acyl arginine surfactants could be due to the presence of the long chain N-acyl-arginine residue and to the absence of intramolecular ionic interactions in the molecule. The free guanidine group together with the surface activity of these compounds could interact with the polyanionic components of the cell surface triggering the biocide mechanisms of these surfactants. In accordance with Ferguson's principle [45], the antimicrobial activity might be related to the combination of several physicochemical properties such as surface activity, adsorption and solubility.

The ultimate biodegradability [46] measurements for the three series of arginine-based cationic surfactants showed that all homologues (except AMA) can be considered biodegradable. Interestingly, using ester type bonds (series 3, Scheme 2) to link the hydrophobic and hydrophilic moieties accelerates their biodegradation considerably. This fact has also been described for sugar-based surfactants [47].

The haemolytic activity, HC50, which is the concentration of surfactant that causes 50% of haemolysis of red blood cells from healthy human donors [48] and the HC50/D ratio, where D is the haemoglobin denaturising index (DI), are the parameters commonly measured for evaluating the potential toxicity of the surfactants. The HC50/D or L/D is used for predicting the potential ocular irritation related to the sodium dodecyl sulphate (SDS) compound (L/DSDS: 0.44; irritant). The values of HC50 for series 1, 2 and 3 (Scheme 2) demonstrated that these compounds can be considered as non-haemolysing agents (HC50 < 1000 μg ml–1). For comparison’s sake, commercial cationic surfactants have HC50 ranging from 4 to 15 μg ml–1. Furthermore, according to the results of the L/D ratio first and by the in vivo eye irritation Draize test later, these linear arginine-based surfactants have no irritant effect in the eyes (non eye-irritants, L/D > 100) [49].

3 Amino acid-based gemini surfactants

Gemini surfactants are a novel class of amphipathic compounds consisting of two hydrophilic and two hydrophobic groups per molecule, linked through a spacer chain. These molecules can be considered dimmers of the single chain conventional surfactants of one hydrophilic and one hydrophobic group. Their interest lies on the number of unexpected surface activity properties, which makes them superior to the conventional surfactants. These molecules show extremely low critical micelle concentration values (CMC, a fundamental parameter of surfactants close related with their hydrophobicity), solubilizing, wetting, foaming, antimicrobial and lime soap dispersion properties [50–57].

3.1 Synthesis

An obvious strategy to increase the efficiency of cationic surfactants and reduce their environmental impact and potential toxicity is to build up gemini structures from environmentally friendly single chain arginine-based surfactants. To this end, our group has chemically synthesized and studied a new class of gemini cationic surfactants derived from the arginine: the Nα,Nω-bis(Nα-acylarginine)α,ω-alkylendiamides or bis(Args) [24,58–59]. These compounds consist of two symmetrical long-chain Nα-acyl-l-arginine residues of twelve, Nα,Nω-bis(Nα-lauroylarginine)α,ω-alkylendiamides [Cn(LA)2 series], and ten carbons atoms, Nα,Nω-bis(Nα-caproylarginine)α,ω-alkylendiamides [Cn(CA)2 series], linked by amide bonds to an α,ω alkylenediamine spacer chain of varying length (n = 2–10) (Scheme 4 left). This particular alkylenediamine spacer chain was chosen to control the distance between the charged sites of the molecule that modify the inter- and intra-hydrophilic–hydrophobic interactions. Bis(Args) were investigated in an attempt to develop a new class of environmentally friendly amino acid-based surfactants with surface activity exceeding that of CAM and LAM, and with at least the same antimicrobial, toxicity and biodegradability properties.

Scheme 4

Structures of bis(Args) gemini cationic surfactants prepared by chemical procedures (left) and chemo-enzymatic procedures (right).

Recently a series of bis(Args) have been prepared at multigram scale by a chemoenzymatic approach using papain deposited onto Celite for the best results [27]. (Scheme 4, right).

3.2 Properties

In the light of our studies, it can be concluded that for most of the properties gemini surfactants are superior to the corresponding conventional monomeric surfactants. They were found to be more efficient surface-active molecules than the single chain structures: about three orders of magnitude for the equilibrium surface tension and about 20 times for the tension equilibration [58] and foam stability [60].

The dilution antimicrobial susceptibility test was carried out and the minimum inhibitory concentration (MIC) values were determined. Bis(Args) exhibited a broad spectrum of preservation capacity at MIC values in the range from 4 to 125 μg ml–1 [23]. The dimerization enhanced the antimicrobial activity for the geminis Cn(CA)2 compared with CAM. Given the peculiar structure of bis(Args), the compounds of the Cn(CA)2 series have a hydrophobicity that is more than twice the hydrophobicity of CAM. However, the presence of two ionic arginine groups in one molecule of Cn(CA)2 can make a positive contribution to the degree of the hydration of this series, showing a water-solubility similar to that of CAM. These two characteristics in the molecule can result in a more effective adsorption and diffusion of Cn(CA)2 on the cell interface, resulting in an antimicrobial action at lower concentrations.

Acute toxicity tests on freshwater crustacea (Daphnia magna), a very sensitive invertebrate [61], as well as on saltwater bacteria [62] (Photobacterium phosphoreum) were carried out to assess the aquatic toxicity. These standard tests represent two of the trophic levels that can be exposed to the cationic surfactants. Concentration values that cause inmobilization in 50% of the Daphnia after 24-h exposure (IC50) and 50% reduction in the light emitted by the bacteria after 30-min exposure (EC50) were determined. Values of IC50 and EC50 for the bis(Args) together with those of LAM and CAM are summarised in Table 2 [63]. Values reported for two series of conventional mono(Quats) DTAB and HTAB are also indicated. When increasing the hydrophobicity of the molecule, the acute toxicity raised for each series of surfactants in agreement with their CMC values, Table 3. Thus, Cn(CA)2 were less toxic than the Cn(LA)2 compounds due to their lower hydrophobic character. Interestingly, IC50 values for Cn(CA)2 compounds were similar to that of LAM. Furthermore, all of them were one order of magnitude less toxic than the conventional mono(Quats).

Table 2

Aquatic toxicity values of Cn(LA)2, Cn(CA)2 series and CAM, LAM, DTAB and HTAB [63]

CompoundsDaphnia magna IC50a (mg l–1)Photobacterium phosphoreum EC50b (mg l–1)
mean95% confidence rangemean95% confidence range
C2(LA)24.4(3.5–5.3)28(18–43)
C3(LA)22.1(1.8–2.4)2.4(2.2–2.7)
C4(LA)24.6(3.9–5.2)5.8(4.3–8.0)
C6(LA)22.4(1.9–2.5)3.0(2.0–4.5)
C9(LA)22.2(1.9–2.5)13(10–17)
C10(LA)216(11–20)20(15–28)
LAM15(12–18)12(10–14)
DTAB0.38(0.36–0.40)0.24(0.20–0.30)
HTAB0.13(0.11–0.15)0.63(0.40–0.98)
C2(CA)216(11–20)1.5(1.2–1.9)
C3(CA)216(11–20)1.1(0.5–2.1)
C4(CA)212(7–17)0.9(0.4–2.2)
C6(CA)215(11–19)1.3(0.3–5.6)
C9(CA)25.5(2.7–8.2)1.1(0.7–1.7)
C10(CA)27.5(5.0–10)2.7(1.2–5.8)
CAM77(56–98)4.0(3.1–5.3)

a Concentration values that cause 50% inhibition in the crustacean mobility after 24 h of exposure.

b Concentration values that cause 50% reduction in the light emitted by the bacteria after 30 min of exposure.

Table 3

CMC values (mg l–1) and HC50 (mg l–1) of CAM, LAM and bis(Args) homologues on human red blood cells [63]

CompoundCMCa (mg l–1)HC50b (mg l–1)
CAM605638.5
C3(CA)21533110.5
C6(CA)212949.0
C9(CA)29358.7
LAM243920.8
C3(LA)246080.7
C3(OH)(LA)25887> 200
C3(OA)249 770> 200

a Critical micelle concentration.

b Hemolysis value.

Due to the complexity and hydrophobicity of the gemini compared with the single chain structures, the biodegradation rate of single chain structures such as LAM (90% in 14 days), was higher than that of the bis(Args) (50–90% in 14 days). The biodegradation rate of bis(Args) decreased when both the spacer chain and the alkyl chain length increased. Hence, the higher the hydrophobicity of the surfactants, the lower their biodegradation rate [63].

The haemolysis test showed again that the highest HC50 values were obtained for the compounds with the highest hydrophobic character, namely, those with the longest alkyl and spacer-chain lengths. There is considerable difference between the HC50 of these new gemini surfactants and those bearing a quaternary ammonium group at the polar head. MonoQuats have HC50 values between 0.05 and 0.1 μg m–1. The introduction of a hydroxyl function to the spacer chain make the compound more hydrophilic, in consequence the CMC increases and the HC50 increases.

Dimerization of LAM and CAM yields environmentally friendly antimicrobial gemini surfactants with lower haemolytic activity, aquatic toxicity and efficient surface activity than other cationic surfactants, (i.e. monoQuats). The increase of hydrophobicity of these molecules is a negative structural parameter for their environmental behaviour.

In summary, amino acid-based surfactants constitute a class of bio-based surfactants with excellent surface properties, wide biological activity, low potential toxicity and low environmental impact. Moreover, they can be prepared efficiently by chemical and enzymatic catalysis. All these features make them an outstanding clean and safe alternative to conventional specialty surfactants. Hence, these new generations of amino acid-based surfactants will contribute to meet the increasing demand of environmentally friendly surfactants for pharmaceutical and food industries.

Acknowledgements

This work was supported by the MEC, Projects QUI97-0570 and PPQ2000-1687-CO2–01 and UA-CSIC Interaccion de Tensioactivos con membranas.


Bibliographie

[1] Y. Okahata; S. Tammamachi; M. Magai; T. Kunitake J. Colloid Interface Sci., 82 (1981), p. 401

[2] M.R. Infante; J. Molinero; P. Erra; R. Juliá; J.J. García Domínguez; M. Robert Fette Seifen Anstrichm., 88 (1986), p. 108

[3] T. Kida; N. Morishima; A. Masuyama; Y. Nakatsuji J. Am. Oil. Chem. Soc., 71 (1994), p. 705

[4] M.R. Infante; A. Pinazo; J. Seguer Colloid Surf. A, 123–124 (1997), p. 49

[5] T. Furutani; H. Ooshima; J. Kato Enzyme Microbiol. Technol., 20 (1997), p. 214

[6] B. Gallot; H.H. Hassan Mol. Cryst. Liq. Cryst., 170 (1989), p. 195

[7] S.E. Godtfredsen, F. Bjoerkling, World Patent No. 90/14429, 1990.

[8] A. Nagao; M. Kito J. Am. Oil. Chem. Soc., 66 (1989), p. 710

[9] I.A. Nnanna; J. Xia Protein-based surfactants: synthesis, physicochemical properties and applications, Marcel Dekker, New York, 2001

[10] A. Vonderhagen, H.-C. Raths, E. Eilers, German Offen. DE 19749555 A1, Henkel K.-G.a.A., Germany, 12 May 1999, p. 4.

[11] R. Valivety; P. Jauregui; E.N. Vulfson J. Am. Oil. Chem. Soc., 74 (1997), p. 879

[12] W. Heutrich, H. Keppler, K. Hintzmann, German Patent 635522, 1936.

[13] H. Yokota; K. Sagawa; C. Eguchi; M. Takehara J. Am. Oil. Chem. Soc, 62 (1985), p. 1716

[14] G. Baschang, A. Hartmann, O. Wacker, US Patent 4666886 A, 1987.

[15] D.B. Braun Cosmetics and Toiletries, 104 (1989), p. 92

[16] P. Presenz Pharmazie, 51 (1996), p. 755

[17] M. Takehara Colloid Surface, 38 (1989), p. 149

[18] M.R. Infante; J.J. García Domínguez; P. Erra; M.R. Juliá; M. Prats Int. J. Cosm. Sci., 6 (1984), p. 27

[19] M.R. Infante; J. Molinero; P. Bosch; M.R. Juliá; P. Erra J.Am.Oil Chem. Soc., 69 (1992), p. 647

[20] M.R. Infante; V. Moses Int. J. Pet. Prot. Res., 43 (1994), p. 173

[21] J. Seguer; M. Allouch; M.P. Vinardell; M.R. Infante; L. Mansuy; C. Selve New J. Chem., 18 (1994), p. 765

[22] J. Seguer; J. Molinero; A. Manresa; J. Caelles; M.R. Infante J. Soc. Cosmet. Chem., 45 (1994), p. 53

[23] L. Pérez; J.L. Torres; A. Manresa; C. Solans; M.R. Infante Langmuir, 12 (1996), p. 5296

[24] M. Macian; J. Seguer; M.R. Infante; C. Selve; M. Pvinardell Toxicology, 106 (1996), p. 1

[25] E. Piera; F. Comelles; P. Erra; M.R. Infante J. Chem. Soc. Perkin Trans., 2 (1998), p. 335

[26] P. Clapés; C. Morán; M.R. Infante Biotech. Bioeng., 63 (1999), p. 333

[27] E. Piera; M.R. Infante; P. Clapés Biotech. Bioeng., 70 (2000), p. 323

[28] S. Pegiadou; L. Pérez; M.R. Infante J. Surf. Deterg., 3 (2000), p. 517

[29] C. Moran; M.R. Infante; P. Clapés J. Chem. Soc Perkin Trans., 2 (2001), p. 2063

[30] P. Clapés; M.R. Infante Biocatal. Biotrans., 20 (2002), p. 215

[31] R. Valivety; I.S. Gill; E.N. Vulfson J. Surf. Deterg., 1 (1998), p. 177

[32] C. Solans; N. Azemar; M.R. Infante; T. Warnheim Prog. Colloid. Polym. Sci., 79 (1989), p. 70

[33] H. Fördedal; J. Sjöblom; M.R. Infante Colloid Surf. A, 79 (1993), p. 81

[34] M.A. Pés, PhD Thesis, University of Barcelona, Spain, 1992.

[35] H. Kunieda; K. Nakamura; M.R. Infante; C. Solans Adv. Mater., 4 (1992), p. 291

[36] T.J. Franklin; G.A. Snow Biochemistry of Antimicrobial Action, Chapman & Hall, New York, 1981

[37] M.J. Rosen Surfactants and Interfacial Phenomena, Wiley & Sons, New York, 1987

[38] C. Boeckler; B. Frisch; F. Schuber Bioorg. Med. Chem. Lett., 8 (1998), p. 2055

[39] N. Yagi; Y. Ogawa; M. Kodaka; T. Okada; T. Tomohiro; T. Konakahara; H. Okuno Lipids, 35 (2000), p. 673

[40] D.J. Claffey; J.D. Meyer; R. Beauvais; T. Brandt; E. Shefter; D.J. Kroll; J.A. Ruth; M.C. Manning Biochem. Cell Biol., 78 (2000), p. 59

[41] M. Kondoh; T. Furutani; M. Azuma; H. Oshima; J. Kato Biosci. Biotech. Bioch., 61 (1997), p. 870

[42] R.F. Epand; M.R. Infante; T.D. Flanagan; R.M. Epand Biochim. Biophys. Acta – Biomembranes, 1373 (1998), pp. 67-75

[43] M.R. Infante; J. Molinero; P. Erra; M.R. Juliá; J.J. García Dominguez Fett. Wiss. Technol., 87 (1998), p. 309

[44] H. Gibson; J.T. Holah (F.F. Morpeth, ed.), Preservation of Surfactant Formulations, Blackie Academic and Professional, Glasgow, 1995, p. 30

[45] J. Ferguson Proc. R. Soc. Serv. B., 127 (1939), p. 387

[46] OECD Chemicals Group, Revised Guidelines for tests for Ready Biodegradability, 301E, Paris, 1993 and OECD guidelines for testing of Chemicals, Vol. 1, section 2: Effects on Biotic System, 202, Paris, 1993

[47] O. Kirk; F.D. Pedersen; C.C. Fuglsang J. Surf. Deterg., 1 (1998), p. 37

[48] W.J.W. Pape; U. Hopper Drug Res., 4 (1990), p. 498

[49] C. Moran; P. Clapés; F. Comelles; M.T. García; L. Pérez; M.P. Vinardell; M. Mitjans; M.R. Infante Langmuir, 17 (2001), p. 5071

[50] M.J. Rosen Chemtech (1993), p. 30

[51] R. Zana, Specialist Sufactants, D. Robb, Blackie, London, 1997, p. 81

[52] F.M. Menger; C.A. Littau J. Am. Chem. Soc., 115 (1993), p. 10083

[53] F. Devinsky; I. Lacko; F. Bittererova; D. Mlynarcik Chem. Pap., 41 (1987), p. 803

[54] M. El Achouri; M.R. Infante; F. Izquierdo; F. Kertit; H.M. Gouttaya; B. Nciri Corros. Sci., 43 (2001), p. 19

[55] F.M. Menger; J.S. Keiper Angew Chem Int. Ed. Engl., 39 (2000), p. 1906

[56] A. Pinazo; M. Diz; A. Pés; P. Erra; M.R. Infante J. Am. Oil Chem. Soc., 70 (1993), p. 37

[57] M. Diz; A. Manresa; A. Pinazo; P. Erra; M.R. Infante J. Chem. Soc. Perkin Trans., 2 (1994)

[58] L. Pérez; A. Pinazo; M.J. Rosen; M.R. Infante Langmuir, 14 (1998), p. 2307

[59] A. Pinazo; X. Wen; L. Pérez; M.R. Infante; E.I. Franses Langmuir, 15 (1999), p. 3134

[60] A. Pinazo; L. Pérez; M.R. Infante; E.I. Franses Colloid Surf. A, 189 (2001), p. 225

[61] OECD Guidelines for Testing of Chemicals, Vol. 1, section 2: Effects on biotic system, Paris, France, 1993, p. 202

[62] J.M. Ribó; K.L.M. Kaiser Toxic. Assess., 2 (1987), p. 305

[63] L. Perez; T. García; I. Ribosa; P. Vinardell; A. Manresa; M.R. Infante Environ. Toxicol. Chem., 21 (2002), p. 1279


Cité par

  • Poonam Gopika Vinayamohan; Leya Susan Viju; Divya Joseph; Kumar Venkitanarayanan Antimicrobial Packaging for Poultry, Antimicrobial Food Packaging (2025), p. 335 | DOI:10.1016/b978-0-323-90747-7.00021-1
  • Nizamul Haque Ansari; Shumaila Shahid; Mohd Shoeb Khan; Navaid Zafar Rizvi; S. M. Shakeel Iqubal; Amal Bahafi Amino Acid-Based Biosurfactants: Promising and Ecofriendly Biomolecules for Attaining Sustainable Agriculture and Environmental Safety, Colloid Journal, Volume 87 (2025) no. 1, p. 78 | DOI:10.1134/s1061933x24601021
  • Evelyn Su; Stephen Herman Beyond Sulfate-Free Personal Cleansing Technology, Cosmetics, Volume 12 (2025) no. 1, p. 14 | DOI:10.3390/cosmetics12010014
  • Vandana Vemulapalli; Babi Lakkoju Synthesis of novel Surfactants from methyl-undecenoate: Properties and Biological activities, Journal of the Indian Chemical Society, Volume 102 (2025) no. 1, p. 101549 | DOI:10.1016/j.jics.2024.101549
  • Zhendong Zhu; Jiahao Zhang; Feihong Wang; Wenhui Feng; Leping Dang; Hongyuan Wei Synergistic Effect and Phase Behavior of SCG-CAPB-H2O Ternary Compound System, Applied Sciences, Volume 14 (2024) no. 7, p. 3081 | DOI:10.3390/app14073081
  • Zi Peng Deng; Qing Hua Zhang; Zhao Hua Ren; Jia Hao Xu; Qi Chao Liu Effect of alcohol on synergistic interaction between amino sulfonate amphoteric surfactant and zwitterionic cocamidopropyl hydroxysultaine in aqueous solution, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 693 (2024), p. 134059 | DOI:10.1016/j.colsurfa.2024.134059
  • Xue Zhao; Zi Wang; Yutong Liu; Bingbing Yuan; Linhua Song; Jeff Penfold; Peixun Li; Zifeng Yan Synthesis and interface behaviors of amino acid surfactants with naturally derived branched hydrophobic chains, Journal of Molecular Liquids, Volume 398 (2024), p. 124328 | DOI:10.1016/j.molliq.2024.124328
  • M. J. S. Moura; R. B. Vasques; M. M. Levy; S. J. M. Magalhães; C. V. P. Pascoal; F. W. Q. Almeida-Neto; P. Lima-Neto; S. L. S. Medeiros; F. C. C. S. Salomão; E. B. Barros; W. S. Araújo Study of the Efficiency of the Amino Acid L-Histidine as a Corrosion Inhibitor of 1018 Carbon Steel in Saline Solution Without and with CO2 Saturation, Materials Research, Volume 27 (2024) no. suppl 1 | DOI:10.1590/1980-5373-mr-2024-0135
  • Guanhua Lu; Michael A. Brook Protecting group-free introduction of amino acids to polymers through the aza-Michael reaction, Polymer Chemistry, Volume 15 (2024) no. 11, p. 1123 | DOI:10.1039/d3py00939d
  • Ali Khalfallah Structure and Applications of Surfactants, Surfactants - Fundamental Concepts and Emerging Perspectives (2024) | DOI:10.5772/intechopen.111401
  • Vaishnavi S. Nagtode; Clive Cardoza; Haya Khader Ahmad Yasin; Suraj N. Mali; Srushti M. Tambe; Pritish Roy; Kartikeya Singh; Antriksh Goel; Purnima D. Amin; Bapu R. Thorat; Jorddy N. Cruz; Amit P. Pratap Green Surfactants (Biosurfactants): A Petroleum-Free Substitute for Sustainability─Comparison, Applications, Market, and Future Prospects, ACS Omega, Volume 8 (2023) no. 13, p. 11674 | DOI:10.1021/acsomega.3c00591
  • Rémi Bascou; Aurore Flick; Erwann Guénin; Alla Nesterenko Development of lipopeptide surfactants from silk sericin and evaluation of their surface active properties, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 678 (2023), p. 132460 | DOI:10.1016/j.colsurfa.2023.132460
  • Mina Jaberi Rad; Omid Alizadeh; Mohammad Ali Takassi; Masoud Mokhtary Green surfactant in oil recovery: Synthesis of a biocompatible surfactant and feasibility study of its application in foam-based enhanced oil recovery, Fuel, Volume 341 (2023), p. 127646 | DOI:10.1016/j.fuel.2023.127646
  • Sofia-Maria Ioannidou; José Pablo López-Gómez; Joachim Venus; Miguel Angel Valera; Vera Eßmann; Irantzu Alegria-Dallo; Ioannis K. Kookos; Apostolis Koutinas; Dimitrios Ladakis Techno-economic evaluation and life cycle assessment for sustainable alternative biorefinery concepts using the organic fraction of municipal solid waste, Green Chemistry, Volume 25 (2023) no. 11, p. 4482 | DOI:10.1039/d3gc00244f
  • Qing Hua Zhang; Rui Sheng; Zhao Hua Ren; Jing Huang; Yun Xiao Wang; Ben Ru Wang; Xi Lei Huang; Qin Cheng; Xue Mei Wu; Tong Bo Wang Interaction and micellar behavior of ternary mixture of amphoteric amino sulfonate surfactant with traditional anionic and nonionic surfactants: Effect of hydrophilicity, Journal of Industrial and Engineering Chemistry, Volume 120 (2023), p. 487 | DOI:10.1016/j.jiec.2022.12.057
  • Vinay Chauhan; Manish Kumar; Isha Soni; Pooja Shandilya; Sukhprit Singh Synthesis, physical properties and cytotoxic assessment of ester-terminated gemini imidazolium surfactants, Journal of Molecular Liquids, Volume 387 (2023), p. 122645 | DOI:10.1016/j.molliq.2023.122645
  • Jia Hao Xu; Qing Hua Zhang; Zhao Hua Ren; Xi Lei Huang; Yan Ping Xie; Rui Cong Mu; Xin Zhou; Qiao Li Wu; Yu Jin Qi Synergistic interaction on quasi-binary mixture of amino sulfonate amphoteric surfactant with nonionic diethanolamide induced by glycerol and its concentration, Journal of Molecular Liquids, Volume 390 (2023), p. 123128 | DOI:10.1016/j.molliq.2023.123128
  • Isabel Oliveira; Sandra Silva; Maria do Vale; Eduardo Marques Model Catanionic Vesicles from Biomimetic Serine-Based Surfactants: Effect of the Combination of Chain Lengths on Vesicle Properties and Vesicle-to-Micelle Transition, Membranes, Volume 13 (2023) no. 2, p. 178 | DOI:10.3390/membranes13020178
  • Ahmed Fawzy; Areej Al Bahir; Nada Alqarni; Arafat Toghan; Manal Khider; Ibrahim M. Ibrahim; Hussein Hasan Abulreesh; Khaled Elbanna Evaluation of synthesized biosurfactants as promising corrosion inhibitors and alternative antibacterial and antidermatophytes agents, Scientific Reports, Volume 13 (2023) no. 1 | DOI:10.1038/s41598-023-29715-5
  • Jing Guo; Lingling Sun; Fan Zhang; Baoshan Sun; Baocai Xu; Yawen Zhou Review: Progress in synthesis, properties and application of amino acid surfactants, Chemical Physics Letters, Volume 794 (2022), p. 139499 | DOI:10.1016/j.cplett.2022.139499
  • Yang Yang; Bei Bei Li; Zhao Hua Ren; Qi Li Long; Ben Ru Wang; Ni Wang; Yun Xiao Wang; Huan Tian; Xuan Ming Zhang; Jie Yuan; Bing Bing Guo; Xi Lei Huang; Han Jing Ma; Qin Cheng; Kai Zeng; Hui Luo Role of core-shell structure in binary mixture of amino sulfonate amphoteric surfactant with nonionic surfactant in solubilization behavior of pyrene, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 644 (2022), p. 128874 | DOI:10.1016/j.colsurfa.2022.128874
  • Gajendra Rajput; Devi Sirisha Janni; Gayathri Subramanyam; Debes Ray; Vinod Aswal; Dharmesh Varade Novel approach for tuning micellar characteristics and rheology of a sulfate-free anionic surfactant sodium cocoyl glycinate, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 648 (2022), p. 129426 | DOI:10.1016/j.colsurfa.2022.129426
  • Dimitris Karayannis; Seraphim Papanikolaou; Christos Vatistas; Cédric Paris; Isabelle Chevalot Yeast Lipid Produced through Glycerol Conversions and Its Use for Enzymatic Synthesis of Amino Acid-Based Biosurfactants, International Journal of Molecular Sciences, Volume 24 (2022) no. 1, p. 714 | DOI:10.3390/ijms24010714
  • Bennet Nii Tackie-Otoo; Mohammed Abdalla Ayoub Mohammed; Esther Boateng Owusu Investigation of the enhanced oil recovery potential of sodium cocoyl alaninate: an eco-friendly surfactant, Journal of Petroleum Exploration and Production Technology, Volume 12 (2022) no. 10, p. 2785 | DOI:10.1007/s13202-022-01481-6
  • Himani Sharma; Rashmi Tyagi Influence of inorganic and organic electrolytes on the micellization of synthesized γ‐alkyl (C12 and C14) aspartate, Journal of Surfactants and Detergents, Volume 25 (2022) no. 5, p. 585 | DOI:10.1002/jsde.12596
  • Dalibor Mijaljica; Fabrizio Spada; Ian P. Harrison Skin Cleansing without or with Compromise: Soaps and Syndets, Molecules, Volume 27 (2022) no. 6, p. 2010 | DOI:10.3390/molecules27062010
  • Mina Jaberi Rad; Omid Alizadeh; Mohammad Ali Takassi; Masoud Mokhtary Green Surfactant in Oil Recovery: Synthesis of a Biocompatible Surfactant and Feasibility Study of its Application in Foam-Based Enhanced Oil Recovery, SSRN Electronic Journal (2022) | DOI:10.2139/ssrn.4046007
  • Nur Liyana Ismail; Sara Shahruddin; Jofry Othman Perspective Chapter: Overview of Bio-Based Surfactant – Recent Development, Industrial Challenge, and Future Outlook, Surfactants and Detergents - Updates and New Insights (2022) | DOI:10.5772/intechopen.100542
  • Ying Li; Jian Huang; Liangliang Lin; Hujun Xu Study on the synthesis and performance of sodium 2-laurylamido isobutyrate, Tenside Surfactants Detergents, Volume 59 (2022) no. 3, p. 254 | DOI:10.1515/tsd-2021-2377
  • Veena T. Kelleppan; Joshua P. King; Calum S.G. Butler; Ashley P. Williams; Kellie L. Tuck; Rico F. Tabor Heads or tails? The synthesis, self-assembly, properties and uses of betaine and betaine-like surfactants, Advances in Colloid and Interface Science, Volume 297 (2021), p. 102528 | DOI:10.1016/j.cis.2021.102528
  • Theresa Barthelmeß; Florian Schütte; Anja Engel Variability of the Sea Surface Microlayer Across a Filament’s Edge and Potential Influences on Gas Exchange, Frontiers in Marine Science, Volume 8 (2021) | DOI:10.3389/fmars.2021.718384
  • H.N. Dilip; Debashree Chakraborty Structural and dynamical properties of water in surfactant-like peptide-based nanotubes: Effect of pore size, tube length and charge, Journal of Molecular Liquids, Volume 323 (2021), p. 115033 | DOI:10.1016/j.molliq.2020.115033
  • Dan Ni Li; Ye Xi Zhang; Zhao Hua Ren; Le Le Cai; Jing Huang; Bei Bei Li; Qing Hua Zhang; Meng Ting Yi; Xiao Feng Quan; Yun Xiao Wang; Ben Ru Wang; Zheng Bo Qian; Jun Ru Wang; Huan Tian; Jie Yuan; Ni Wang; Qi Li Long; Xuan Ming Zhang Molecular interaction for quasi-binary mixture of N-acyl amino sulfonate amphoteric surfactant from castor oil and stearyltrimethyl ammonium bromide, Journal of Molecular Liquids, Volume 339 (2021), p. 116813 | DOI:10.1016/j.molliq.2021.116813
  • Lourdes Pérez; Ramon Pons; Francisco Fábio Oliveira de Sousa; Maria del Carmen Morán; Anderson Ramos da Silva; Aurora Pinazo Green cationic arginine surfactants: Influence of the polar head cationic character on the self-aggregation and biological properties, Journal of Molecular Liquids, Volume 339 (2021), p. 116819 | DOI:10.1016/j.molliq.2021.116819
  • Rui Pereira; Sandra G. Silva; Marina Pinheiro; Salette Reis; M. Luísa do Vale Current Status of Amino Acid-Based Permeation Enhancers in Transdermal Drug Delivery, Membranes, Volume 11 (2021) no. 5, p. 343 | DOI:10.3390/membranes11050343
  • Marco Vizcarra-Pacheco; María Ley-Flores; Ana Mizrahim Matrecitos-Burruel; Ricardo López-Esparza; Daniel Fernández-Quiroz; Armando Lucero-Acuña; Paul Zavala-Rivera Synthesis and Characterization of a Bioconjugate Based on Oleic Acid and L-Cysteine, Polymers, Volume 13 (2021) no. 11, p. 1791 | DOI:10.3390/polym13111791
  • Dinal V. Patel; Mehul N. Patel; Mansi S. Dholakia; B.N. Suhagia Green synthesis and properties of arginine derived complexes for assorted drug delivery systems: A review, Sustainable Chemistry and Pharmacy, Volume 21 (2021), p. 100441 | DOI:10.1016/j.scp.2021.100441
  • Mrunal Patil; Shashir Wanjare; Vivek Borse; Rohit Srivastava; Preeti Mehta; Pradeep Vavia Arginolipid: A membrane‐active antifungal agent and its synergistic potential to combat drug resistance in clinical Candida isolates, Archiv der Pharmazie, Volume 353 (2020) no. 1 | DOI:10.1002/ardp.201900180
  • R. Bois; I. Pezron; A. Nesterenko Dynamic interfacial properties of sugar-based surfactants: Experimental study and modeling, Colloid and Interface Science Communications, Volume 37 (2020), p. 100293 | DOI:10.1016/j.colcom.2020.100293
  • Nausheen Joondan; Sabina J. Laulloo; Prakashanand Caumul; Prashant S. Kharkar Antioxidant, Antidiabetic and Anticancer Activities of L-Phenylalanine and L-Tyrosine Ester Surfactants: In Vitro and In Silico Studies of their Interactions with Macromolecules as Plausible Mode of Action for their Biological Properties, Current Bioactive Compounds, Volume 15 (2020) no. 6, p. 610 | DOI:10.2174/1573407214666180829125309
  • T.N. Pashirova; A.S. Sapunova; S.S. Lukashenko; E.A. Burilova; A.P. Lubina; Z.M. Shaihutdinova; T.P. Gerasimova; V.I. Kovalenko; A.D. Voloshina; E.B. Souto; L.Ya. Zakharova Synthesis, structure-activity relationship and biological evaluation of tetracationic gemini Dabco-surfactants for transdermal liposomal formulations, International Journal of Pharmaceutics, Volume 575 (2020), p. 118953 | DOI:10.1016/j.ijpharm.2019.118953
  • Bennet Nii Tackie-Otoo; Mohammed Abdalla Ayoub Mohammed Experimental investigation of the behaviour of a novel amino acid-based surfactant relevant to EOR application, Journal of Molecular Liquids, Volume 316 (2020), p. 113848 | DOI:10.1016/j.molliq.2020.113848
  • Amra Bratovcic; Sanela Nazdrajic Viscoelastic Behavior of Synthesized Liquid Soaps and Surface Activity Properties of Surfactants, Journal of Surfactants and Detergents, Volume 23 (2020) no. 6, p. 1135 | DOI:10.1002/jsde.12444
  • Osmanova Olha ТЕХНОЛОГІЧНІ ТА ЕКОЛОГІЧНІ АСПЕКТИ ОТРИМАННЯ ПОВЕРХНЕВО-АКТИВНИХ РЕЧОВИН, Science Review (2020) no. 8(35) | DOI:10.31435/rsglobal_sr/30122020/7298
  • Nausheen Joondan; Harsha Devi Angundhooa; Minu Gupta Bhowon; Prakashanand Caumul; Sabina Jhaumeer Laulloo Detergent Properties of Coconut Oil Derived N-Acyl Prolinate Surfactant and the In silico Studies on its Effectiveness Against SARS-CoV-2 (COVID-19), Tenside Surfactants Detergents, Volume 57 (2020) no. 5, p. 361 | DOI:10.3139/113.110705
  • Spardha Jhamb; Xiaodong Liang; Rafiqul Gani; Georgios M. Kontogeorgis Systematic Model-Based Methodology for Substitution of Hazardous Chemicals, ACS Sustainable Chemistry Engineering, Volume 7 (2019) no. 8, p. 7652 | DOI:10.1021/acssuschemeng.8b06064
  • Fatemeh Makavipour; Richard M. Pashley; A. F. M. Mokhlesur Rahman Low‐Level Arsenic Removal from Drinking Water, Global Challenges, Volume 3 (2019) no. 3 | DOI:10.1002/gch2.201700047
  • Cornelius B. Bavoh; Bhajan Lal; Harrison Osei; Khalik M. Sabil; Hilmi Mukhtar A review on the role of amino acids in gas hydrate inhibition, CO2 capture and sequestration, and natural gas storage, Journal of Natural Gas Science and Engineering, Volume 64 (2019), p. 52 | DOI:10.1016/j.jngse.2019.01.020
  • Li‐Huei Lin; Hawn‐Chung Chu; Keng‐Ming Chen; Shih‐Chieh Chen Surface Properties of Glucose‐Based Surfactants and Their Application in Textile Dyeing with Natural Dyes, Journal of Surfactants and Detergents, Volume 22 (2019) no. 1, p. 73 | DOI:10.1002/jsde.12207
  • Zhenghong Chen; Pingping Zhang; Yimeng Sun; Ce Wang; Baocai Xu Interfacial Dilational Rheology of Sodium Lauryl Glycine and Mixtures with Conventional Surfactants, Journal of Surfactants and Detergents, Volume 22 (2019) no. 6, p. 1477 | DOI:10.1002/jsde.12312
  • M. Syukri; N. R. Purba; B. R. Hutajulu; D. Alfizah; A. Hutagalung; Z. Masyithah, PROCEEDINGS OF THE 5TH INTERNATIONAL SYMPOSIUM ON APPLIED CHEMISTRY 2019, Volume 2175 (2019), p. 020015 | DOI:10.1063/1.5134579
  • Mana Okasaka; Koji Kubota; Emi Yamasaki; Jianzhong Yang; Sadaki Takata Evaluation of anionic surfactants effects on the skin barrier function based on skin permeability, Pharmaceutical Development and Technology, Volume 24 (2019) no. 1, p. 99 | DOI:10.1080/10837450.2018.1425885
  • Ting-Ting Shi; Zheng Fang; Wen-Bo Zeng; Zhao Yang; Wei He; Kai Guo Design, synthesis and properties investigation of Nα-acylation lysine based derivatives, RSC Advances, Volume 9 (2019) no. 13, p. 7587 | DOI:10.1039/c9ra00213h
  • Borislav A. Anchev; Daniela S. Tsekova; Kristina M. Mircheva; Nikolay A. Grozev Monolayer formed by l-Asp-based gemini surfactants self-assembled in 1D nanostructures, RSC Advances, Volume 9 (2019) no. 57, p. 33071 | DOI:10.1039/c9ra06390k
  • Kedong Zhang; Baiyu Zhang; Xing Song; Bo Liu; Liang Jing; Bing Chen Generation of shrimp waste-based dispersant for oil spill response, Environmental Science and Pollution Research, Volume 25 (2018) no. 10, p. 9443 | DOI:10.1007/s11356-018-1222-0
  • Anja Engel; Martin Sperling; Cuici Sun; Julia Grosse; Gernot Friedrichs Organic Matter in the Surface Microlayer: Insights From a Wind Wave Channel Experiment, Frontiers in Marine Science, Volume 5 (2018) | DOI:10.3389/fmars.2018.00182
  • Nausheen Joondan; Sabina Jhaumeer Laulloo; Prakashanand Caumul Amino acids: Building blocks for the synthesis of greener amphiphiles, Journal of Dispersion Science and Technology, Volume 39 (2018) no. 11, p. 1550 | DOI:10.1080/01932691.2017.1421085
  • Surfactants and Amphiphiles, Oilfield Chemistry and its Environmental Impact (2018), p. 111 | DOI:10.1002/9781119244233.ch3
  • Lídia Pinheiro; Célia Faustino Amino Acid-Based Surfactants for Biomedical Applications, Application and Characterization of Surfactants (2017) | DOI:10.5772/67977
  • Nausheen Joondan; Sabina Jhaumeer-Laulloo; Prakashanand Caumul; Matthew Akerman Synthesis, physicochemical, and biological activities of novel N-acyl tyrosine monomeric and Gemini surfactants in single and SDS/CTAB-mixed micellar system, Journal of Physical Organic Chemistry, Volume 30 (2017) no. 10, p. e3675 | DOI:10.1002/poc.3675
  • Nausheen Joondan; Prakashanand Caumul; Sabina Jhaumeer‐Laulloo Investigation of the physicochemical and biological properties of proline‐based surfactants in single and mixed surfactant systems, Journal of Surfactants and Detergents, Volume 20 (2017) no. 1, p. 103 | DOI:10.1007/s11743-016-1895-7
  • Manisha B. Ahire; Sunil S. Bhagwat Novel Ester‐linked Anionic Gemini Surfactant: Synthesis, Surface‐Active Properties and Antimicrobial Study, Journal of Surfactants and Detergents, Volume 20 (2017) no. 4, p. 789 | DOI:10.1007/s11743-017-1977-1
  • Rongliang Wu; Xinlong Qiu; Yiqin Shi; Manli Deng Molecular dynamics simulation of the atomistic monolayer structures of N-acyl amino acid-based surfactants, Molecular Simulation, Volume 43 (2017) no. 7, p. 491 | DOI:10.1080/08927022.2016.1261289
  • Yuriko Nagasaka; Shinpei Tanaka; Tatsuo Nehira; Tomoko Amimoto Spontaneous emulsification and self-propulsion of oil droplets induced by the synthesis of amino acid-based surfactants, Soft Matter, Volume 13 (2017) no. 37, p. 6450 | DOI:10.1039/c7sm01117b
  • D.P. Karumathil; A. Upadhyay; K. Venkitanarayanan Antimicrobial Packaging for Poultry, Antimicrobial Food Packaging (2016), p. 257 | DOI:10.1016/b978-0-12-800723-5.00019-x
  • Hongmei Ren; Changxin Shi; Shemin Song; Qingqiao Zeng; Yuzhen Zhang Synthesis of diacyl amino acid surfactant and evaluation of its potential for surfactant–polymer flooding, Applied Petrochemical Research, Volume 6 (2016) no. 1, p. 59 | DOI:10.1007/s13203-014-0094-6
  • Sreenu Madhumanchi; Pradosh P. Chakrabarti; V.S.K. Rao Bhamidipati; Prasad Badari Narayana Rachapudi Preparation and surface active properties of coconut and sunflower protein-based diethanolamides, Biomass Conversion and Biorefinery, Volume 6 (2016) no. 4, p. 377 | DOI:10.1007/s13399-016-0209-7
  • Romain Bordes; Krister Holmberg Amino Acid-Based Surfactants, Encyclopedia of Surface and Colloid Science, Third Edition (2016), p. 362 | DOI:10.1081/e-escs3-120044885
  • Mohamed Ahmed Mahmoud Abdel Reheim; Ahmed Mahmoud El-Sayed Tolba Synthesis and Spectral Identification of Novel Stable Triazene: As Raw Material for the Synthesis Biocompatible Surfactants-Pyrazole-Isoxazole-Dihydropyrimidine-Tetrahydropyridine Derivatives, International Journal of Organic Chemistry, Volume 06 (2016) no. 01, p. 44 | DOI:10.4236/ijoc.2016.61005
  • Badreddine Belhamdi; Zoulikha Merzougui; Mohamed Trari; Abdelhamid Addoun A kinetic, equilibrium and thermodynamic study of l-phenylalanine adsorption using activated carbon based on agricultural waste (date stones), Journal of Applied Research and Technology, Volume 14 (2016) no. 5, p. 354 | DOI:10.1016/j.jart.2016.08.004
  • M. Bougueroua; R. Mousli; A. Tazerouti Synthesis and Physicochemical Properties of Alanine‐Based Surfactants, Journal of Surfactants and Detergents, Volume 19 (2016) no. 6, p. 1121 | DOI:10.1007/s11743-016-1878-8
  • Ravi Bhattarai; Tanushree Sutradhar; Biplab Roy; Pritam Guha; Priyam Chettri; Amit Kumar Mandal; Alexey G. Bykov; Alexander V. Akentiev; Boris A. Noskov; Amiya Kumar Panda Double-Tailed Cystine Derivatives as Novel Substitutes of Phospholipids with Special Reference to Liposomes, The Journal of Physical Chemistry B, Volume 120 (2016) no. 41, p. 10744 | DOI:10.1021/acs.jpcb.6b06413
  • Ibrahim Hanno; Marisanna Centini; Cecilia Anselmi; Claudia Bibiani Green Cosmetic Surfactant from Rice: Characterization and Application, Cosmetics, Volume 2 (2015) no. 4, p. 322 | DOI:10.3390/cosmetics2040322
  • Madhumanchi Sreenu; Rachapudi Badari Narayana Prasad; Pombala Sujitha; Chityal Ganesh Kumar Synthesis and Surface-Active Properties of Sodium N-Acylphenylalanines and Their Cytotoxicity, Industrial Engineering Chemistry Research, Volume 54 (2015) no. 7, p. 2090 | DOI:10.1021/ie503764v
  • Nausheen Joondan; Sabina Jhaumeer‐Laulloo; Prakashanand Caumul Effect of Chain Length on the Micellization, Antibacterial, DPPC Interaction and Antioxidant Activities of l‐3,4‐Dihydroxyphenylalanine (l‐DOPA) Esters, Journal of Surfactants and Detergents, Volume 18 (2015) no. 6, p. 1095 | DOI:10.1007/s11743-015-1720-8
  • Dharana Jayawardane; Fang Pan; Jian R. Lu; Xiubo Zhao Co-adsorption of peptide amphiphile V6K and conventional surfactants SDS and C12TAB at the solid/water interface, Soft Matter, Volume 11 (2015) no. 40, p. 7986 | DOI:10.1039/c5sm01670c
  • Marcelina Gorczyca; Beata Korchowiec; Jacek Korchowiec; Sonia Trojan; Jenifer Rubio-Magnieto; Santiago V. Luis; Ewa Rogalska A Study of the Interaction between a Family of Gemini Amphiphilic Pseudopeptides and Model Monomolecular Film Membranes Formed with a Cardiolipin, The Journal of Physical Chemistry B, Volume 119 (2015) no. 22, p. 6668 | DOI:10.1021/acs.jpcb.5b02575
  • Güzin Kekeç; Sedat Cosgun Genotoxicity potentials of anionic and cationic amino acid-based surfactants, Toxicology and Industrial Health, Volume 31 (2015) no. 4, p. 377 | DOI:10.1177/0748233712469657
  • Zdenka Peršin; Uroš Maver; Tanja Pivec; Tina Maver; Alenka Vesel; Miran Mozetič; Karin Stana-Kleinschek Novel cellulose based materials for safe and efficient wound treatment, Carbohydrate Polymers, Volume 100 (2014), p. 55 | DOI:10.1016/j.carbpol.2013.03.082
  • Célia M. C. Faustino; Cláudia S. Serafim; Inês N. Ferreira; Mafalda A. Branco; António R. T. Calado; Luis Garcia-Rio Mixed Micelle Formation between an Amino Acid-Based Anionic Gemini Surfactant and Bile Salts, Industrial Engineering Chemistry Research, Volume 53 (2014) no. 24, p. 10112 | DOI:10.1021/ie5003735
  • Raquel S. Teixeira; Tânia F.G.G. Cova; Sérgio M.C. Silva; Rita Oliveira; Maria J. Araújo; Eduardo F. Marques; Alberto A.C.C. Pais; Francisco J.B. Veiga Lysine-based surfactants as chemical permeation enhancers for dermal delivery of local anesthetics, International Journal of Pharmaceutics, Volume 474 (2014) no. 1-2, p. 212 | DOI:10.1016/j.ijpharm.2014.08.002
  • Zhongchun Liu; Jinling Chai; Ziqiang Chai; Ningning Liu; Haihui Chai; Hengming Zhang Interfacial Composition, Solubility, and Solubilization Capacity of Microemulsions Containing Cationic Gemini and Anionic Surfactants, Journal of Chemical Engineering Data, Volume 59 (2014) no. 7, p. 2230 | DOI:10.1021/je500182z
  • Vinay Chauhan; Sukhprit Singh; Raman Kamboj; Rachana Mishra; Gurcharan Kaur Self-assembly, DNA binding and cytotoxicity trends of ether functionalized gemini pyridinium amphiphiles, Journal of Colloid and Interface Science, Volume 417 (2014), p. 385 | DOI:10.1016/j.jcis.2013.11.059
  • Paula Criado; Carole Fraschini; Stéphane Salmieri; Monique Lacroix Modification of Nanocrystalline Cellulose for Bioactive Loaded Films, Journal of Research Updates in Polymer Science, Volume 3 (2014) no. 2, p. 122 | DOI:10.6000/1929-5995.2014.03.02.7
  • Yingying Shi; Jun Wang Synthesis and Properties of N‐Dodecyl Aspartic Acid and Its Sodium Salt, Journal of Surfactants and Detergents, Volume 17 (2014) no. 6, p. 1133 | DOI:10.1007/s11743-014-1617-y
  • Ayushi Singh; Vinod K. Tyagi Arginine Based Novel Cationic Surfactants: A Review, Tenside Surfactants Detergents, Volume 51 (2014) no. 3, p. 202 | DOI:10.3139/113.110299
  • Tanja Pivec; Zdenka Peršin; Mitja Kolar; Tina Maver; Andreja Dobaj; Alenka Vesel; Uroš Maver; Karin Stana-Kleinschek Modification of cellulose non-woven substrates for preparation of modern wound dressings, Textile Research Journal, Volume 84 (2014) no. 1, p. 96 | DOI:10.1177/0040517513483855
  • Jie Zhang; Dan Cai; Shanshan Wang; Ying Tang; Zhao Zhang; Ya Liu; Xiaoqing Gao Efficient method for the synthesis of fatty acid amide from soybean oil methyl ester catalysed by modified CaO, The Canadian Journal of Chemical Engineering, Volume 92 (2014) no. 5, p. 871 | DOI:10.1002/cjce.21948
  • Marion B. Ansorge-Schumacher; Oliver Thum Immobilised lipases in the cosmetics industry, Chemical Society Reviews, Volume 42 (2013) no. 15, p. 6475 | DOI:10.1039/c3cs35484a
  • Jérôme Guilbot; Sébastien Kerverdo; Alain Milius; Rémi Escola; Fredrik Pomrehn Life cycle assessment of surfactants: the case of an alkyl polyglucoside used as a self emulsifier in cosmetics, Green Chemistry, Volume 15 (2013) no. 12, p. 3337 | DOI:10.1039/c3gc41338a
  • Laura Higueras; Gracia López-Carballo; Pilar Hernández-Muñoz; Rafael Gavara; Manuela Rollini Development of a novel antimicrobial film based on chitosan with LAE (ethyl-Nα-dodecanoyl-l-arginate) and its application to fresh chicken, International Journal of Food Microbiology, Volume 165 (2013) no. 3, p. 339 | DOI:10.1016/j.ijfoodmicro.2013.06.003
  • Bo Gao; Mukul M. Sharma A family of alkyl sulfate gemini surfactants. 1. Characterization of surface properties, Journal of Colloid and Interface Science, Volume 404 (2013), p. 80 | DOI:10.1016/j.jcis.2013.04.043
  • Yunxiang Li; Krister Holmberg; Romain Bordes Micellization of true amphoteric surfactants, Journal of Colloid and Interface Science, Volume 411 (2013), p. 47 | DOI:10.1016/j.jcis.2013.08.048
  • Lia M. C. Lima; Marina I. Giannotti; Lorena Redondo-Morata; M. Luísa C. Vale; Eduardo F. Marques; Fausto Sanz Morphological and Nanomechanical Behavior of Supported Lipid Bilayers on Addition of Cationic Surfactants, Langmuir, Volume 29 (2013) no. 30, p. 9352 | DOI:10.1021/la400067n
  • Katherine Nott; Gaëtan Richard; Pascal Laurent; Christine Jérôme; Christophe Blecker; Jean-Paul Wathelet; Michel Paquot; Magali Deleu Enzymatic synthesis and surface properties of novel rhamnolipids, Process Biochemistry, Volume 48 (2013) no. 1, p. 133 | DOI:10.1016/j.procbio.2012.11.019
  • Rodrigo O. Brito; Isabel S. Oliveira; Maria J. Araújo; Eduardo F. Marques Morphology, Thermal Behavior, and Stability of Self-Assembled Supramolecular Tubules from Lysine-Based Surfactants, The Journal of Physical Chemistry B, Volume 117 (2013) no. 32, p. 9400 | DOI:10.1021/jp400127k
  • Jumat Salimon; Nadia Salih; Emad Yousif Industrial development and applications of plant oils and their biobased oleochemicals, Arabian Journal of Chemistry, Volume 5 (2012) no. 2, p. 135 | DOI:10.1016/j.arabjc.2010.08.007
  • Nathalie Ménard; Nicolas Tsapis; Cécile Poirier; Thomas Arnauld; Laurence Moine; François Lefoulon; Jean-Manuel Péan; Elias Fattal Drug solubilization and in vitro toxicity evaluation of lipoamino acid surfactants, International Journal of Pharmaceutics, Volume 423 (2012) no. 2, p. 312 | DOI:10.1016/j.ijpharm.2011.11.030
  • R. Ariki; A. Hirano; T. Arakawa; K. Shiraki Drug solubilization effect of lauroyl-L-glutamate, Journal of Biochemistry, Volume 151 (2012) no. 1, p. 27 | DOI:10.1093/jb/mvr117
  • Célia M.C. Faustino; António R.T. Calado; Luís Garcia-Rio Interactions between β-cyclodextrin and an amino acid-based anionic gemini surfactant derived from cysteine, Journal of Colloid and Interface Science, Volume 367 (2012) no. 1, p. 286 | DOI:10.1016/j.jcis.2011.07.101
  • Raman Kamboj; Sukhprit Singh; Avinash Bhadani; Hardeep Kataria; Gurcharan Kaur Gemini Imidazolium Surfactants: Synthesis and Their Biophysiochemical Study, Langmuir, Volume 28 (2012) no. 33, p. 11969 | DOI:10.1021/la300920p
  • Janet L. Scott; Gianfranco Unali Chemicals from Biomass, Materials for a Sustainable Future (2012), p. 279 | DOI:10.1039/bk9781849734073-00279
  • Manfred P. Schneider Bioconversion of Renewables—Plant Oils, Biocatalysis for Green Chemistry and Chemical Process Development (2011), p. 391 | DOI:10.1002/9781118028308.ch15
  • Aneta D. Petelska; Monika Naumowicz; Zbigniew A. Figaszewski The Equilibrium of Phosphatidylcholine–Amino Acid System in Monolayer at the Air/water Interface, Cell Biochemistry and Biophysics, Volume 60 (2011) no. 3, p. 155 | DOI:10.1007/s12013-010-9133-9
  • Anshupriya Shome; Tanmoy Kar; Prasanta K. Das Spontaneous Formation of Biocompatible Vesicles in Aqueous Mixtures of Amino Acid‐Based Cationic Surfactants and SDS/SDBS, ChemPhysChem, Volume 12 (2011) no. 2, p. 369 | DOI:10.1002/cphc.201000708
  • Rodrigo O. Brito; Sandra G. Silva; Ricardo M.F. Fernandes; Eduardo F. Marques; José Enrique-Borges; Maria Luísa C. do Vale Enhanced interfacial properties of novel amino acid-derived surfactants: Effects of headgroup chemistry and of alkyl chain length and unsaturation, Colloids and Surfaces B: Biointerfaces, Volume 86 (2011) no. 1, p. 65 | DOI:10.1016/j.colsurfb.2011.03.017
  • Aurora Pinazo; Ramon Pons; Lourdes Pérez; Maria Rosa Infante Amino Acids as Raw Material for Biocompatible Surfactants, Industrial Engineering Chemistry Research, Volume 50 (2011) no. 9, p. 4805 | DOI:10.1021/ie1014348
  • D. Asker; J. Weiss; D. J. McClements Formation and Stabilization of Antimicrobial Delivery Systems Based on Electrostatic Complexes of Cationic−Non-ionic Mixed Micelles and Anionic Polysaccharides, Journal of Agricultural and Food Chemistry, Volume 59 (2011) no. 3, p. 1041 | DOI:10.1021/jf103073w
  • Célia M.C. Faustino; António R.T. Calado; Luís Garcia-Rio Mixed micelle formation between amino acid-based surfactants and phospholipids, Journal of Colloid and Interface Science, Volume 359 (2011) no. 2, p. 493 | DOI:10.1016/j.jcis.2011.04.016
  • Bejoy Thomas; Niki Baccile; Sylvie Masse; Caroline Rondel; Isabelle Alric; Romain Valentin; Zéphirin Mouloungui; Florence Babonneau; Thibaud Coradin Mesostructured silica from amino acid-based surfactant formulations and sodium silicate at neutral pH, Journal of Sol-Gel Science and Technology, Volume 58 (2011) no. 1, p. 170 | DOI:10.1007/s10971-010-2372-9
  • Radia Mousli; Amel Tazerouti Synthesis and Some Surface Properties of Glycine‐Based Surfactants, Journal of Surfactants and Detergents, Volume 14 (2011) no. 1, p. 65 | DOI:10.1007/s11743-010-1210-y
  • Caroline Rondel; Bénédicte Portet; Isabelle Alric; Zéphirin Mouloungui; Jean‐François Blanco; Françoise Silvestre Green Production of Anionic Surfactant Obtained from Pea Protein, Journal of Surfactants and Detergents, Volume 14 (2011) no. 4, p. 535 | DOI:10.1007/s11743-011-1283-2
  • Avinash Bhadani; Sukhprit Singh Synthesis and Properties of Thioether Spacer Containing Gemini Imidazolium Surfactants, Langmuir, Volume 27 (2011) no. 23, p. 14033 | DOI:10.1021/la202201r
  • Chi-Hsien Liu; Shin-Ying Yu Cationic nanoemulsions as non-viral vectors for plasmid DNA delivery, Colloids and Surfaces B: Biointerfaces, Volume 79 (2010) no. 2, p. 509 | DOI:10.1016/j.colsurfb.2010.05.026
  • M. Kanlayavattanakul; N. Lourith Lipopeptides in cosmetics, International Journal of Cosmetic Science, Volume 32 (2010) no. 1, p. 1 | DOI:10.1111/j.1468-2494.2009.00543.x
  • Célia M.C. Faustino; António R.T. Calado; Luís Garcia-Rio Dimeric and monomeric surfactants derived from sulfur-containing amino acids, Journal of Colloid and Interface Science, Volume 351 (2010) no. 2, p. 472 | DOI:10.1016/j.jcis.2010.08.007
  • Zhiguo Hu; Suzhen Guo; Caihong Huang Synthesis and micellization behavior of chiral amphiphilic diblock copolymers bearing amino acid/dipeptide pendants, Reactive and Functional Polymers, Volume 70 (2010) no. 4, p. 210 | DOI:10.1016/j.reactfunctpolym.2009.12.001
  • Kris Arvid Berglund; Ulrika Rova; David B. Hodge Fermentation‐Based Building Blocks for Renewable Resource‐Based Surfactants, Surfactants from Renewable Resources (2010), p. 127 | DOI:10.1002/9780470686607.ch7
  • Patrick Adlercreutz; Rajni Hatti‐Kaul Synthesis of Surfactants Using Enzymes, Surfactants from Renewable Resources (2010), p. 143 | DOI:10.1002/9780470686607.ch8
  • R. Vijay; A. B. Mandal; Geetha Baskar 1H NMR Spectroscopic Investigations on the Conformation of Amphiphilic Aromatic Amino Acid Derivatives in Solution: Effect of Chemical Architecture of Amphiphiles and Polarity of Solvent Medium, The Journal of Physical Chemistry B, Volume 114 (2010) no. 43, p. 13691 | DOI:10.1021/jp104194j
  • Célia M. C. Faustino; António R. T. Calado; Luís Garcia-Rio Gemini Surfactant−Protein Interactions: Effect of pH, Temperature, and Surfactant Stereochemistry, Biomacromolecules, Volume 10 (2009) no. 9, p. 2508 | DOI:10.1021/bm9004723
  • Katherine Nott; Michel Paquot; Samuel Dufour; Marc Eeman; Magali Deleu Surface properties of new virginiamycin M1 derivatives, Colloids and Surfaces B: Biointerfaces, Volume 69 (2009) no. 2, p. 268 | DOI:10.1016/j.colsurfb.2008.11.023
  • Yangping Wen; Jingkun Xu; Haohua He; Baoyang Lu; Yuzhen Li; Bin Dong Electrochemical polymerization of 3,4-ethylenedioxythiophene in aqueous micellar solution containing biocompatible amino acid-based surfactant, Journal of Electroanalytical Chemistry, Volume 634 (2009) no. 1, p. 49 | DOI:10.1016/j.jelechem.2009.07.012
  • Susana R. Morcelle; Constanza S. Liggieri; Mariela A. Bruno; Nora Priolo; Pere Clapés Screening of plant peptidases for the synthesis of arginine-based surfactants, Journal of Molecular Catalysis B: Enzymatic, Volume 57 (2009) no. 1-4, p. 177 | DOI:10.1016/j.molcatb.2008.08.013
  • Akio Ohta; Yuya Miyazato; Hiroyasu Sasaki; Kazuma Yasuhara; Tsuyoshi Asakawa Effect of Functional Groups on Incorporation Behavior of Amino Acid-Type Surfactant into Phospholipid Vesicle Membrane, Journal of Oleo Science, Volume 58 (2009) no. 12, p. 607 | DOI:10.5650/jos.58.607
  • Caroline Rondel; Isabelle Alric; Zéphirin Mouloungui; Jean‐François Blanco; Françoise Silvestre Synthesis and Properties of Lipoamino Acid–Fatty Acid Mixtures: Influence of the Amphiphilic Structure, Journal of Surfactants and Detergents, Volume 12 (2009) no. 3, p. 269 | DOI:10.1007/s11743-009-1121-y
  • Célia M. C. Faustino; António R. T. Calado; Luís Garcia-Rio New Urea-Based Surfactants Derived from α,ω-Amino Acids, The Journal of Physical Chemistry B, Volume 113 (2009) no. 4, p. 977 | DOI:10.1021/jp807396k
  • R. Vijay; S. Angayarkanny; Geetha Baskar Amphiphilic dodecyl ester derivatives from aromatic amino acids: Significance of chemical architecture in interfacial adsorption characteristics, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 317 (2008) no. 1-3, p. 643 | DOI:10.1016/j.colsurfa.2007.11.059
  • Eduardo F. Marques; Rodrigo O. Brito; Sandra G. Silva; J. Enrique Rodríguez-Borges; Maria Luísa do Vale; Paula Gomes; Maria J. Araújo; Olle Söderman Spontaneous Vesicle Formation in Catanionic Mixtures of Amino Acid-Based Surfactants: Chain Length Symmetry Effects, Langmuir, Volume 24 (2008) no. 19, p. 11009 | DOI:10.1021/la801518h
  • Paula Gomes; Maria João Araújo; Eduardo F. Marques; Soraia Falcão; Rodrigo O. Brito Straightforward Method for the Preparation of Lysine-Based Double-Chained Anionic Surfactants, Synthetic Communications, Volume 38 (2008) no. 12, p. 2025 | DOI:10.1080/00397910801997827
  • Rodrigo O. Brito; Eduardo F. Marques; Paula Gomes; Maria João Araújo; Ramon Pons Structure/Property Relationships for the Thermotropic Behavior of Lysine-Based Amphiphiles: from Hexagonal to Smectic Phases, The Journal of Physical Chemistry B, Volume 112 (2008) no. 47, p. 14877 | DOI:10.1021/jp8042494
  • Yongsheng Wang; Rong Guo; Xia Guo The self-organization properties of n-dodecylammonium α-glutamate/n-C5H11OH/water system, Colloid and Polymer Science, Volume 285 (2007) no. 13, p. 1423 | DOI:10.1007/s00396-007-1698-5
  • Yun-Yang Wan; Yu-Min Du; Lian-Sheng Wang; Kai Hu; Gong-Zhen Cheng; Jian-Hong Yang; F. John Kennedy Synthesis and characterization of a kind of nonionic surfactant didodecyl 2-(2,3,4,5,6-pentahydroxy-hexanamido) pentanedioate: A green chemistry, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 296 (2007) no. 1-3, p. 270 | DOI:10.1016/j.colsurfa.2006.10.009
  • M. Kanthimathi; Aruna Dhathathreyan Langmuir and Langmuir–Blodgett films of N-(4-octadecyloxy-2-hydroxybenzylidene) derivatives of amino acids, Journal of Colloid and Interface Science, Volume 310 (2007) no. 1, p. 337 | DOI:10.1016/j.jcis.2007.01.016
  • Evdoxia‐Maria A. Varka; Maria G. Heli; Evdoxia Coutouli‐Argyropoulou; Sofia A. Pegiadou Synthesis and Characterization of Nonconventional Surfactants of Aromatic Amino Acid–Glycerol Ethers: Effect of the Amino Acid Moiety on the Orientation and Surface Properties of These Soap‐Type Amphiphiles, Chemistry – A European Journal, Volume 12 (2006) no. 32, p. 8305 | DOI:10.1002/chem.200501529
  • María J. Tapia; Hugh D. Burrows; Matti Knaapila; Andrew P. Monkman; Antonio Arroyo; Swapna Pradhan; Ullrich Scherf; Aurora Pinazo; Lourdes Pérez; Carmen Morán Interaction between the Conjugated Polyelectrolyte Poly1,4-phenylene[9,9-bis(4-phenoxybutylsulfonate)]fluorene-2,7-diyl Copolymer and the Lecithin Mimic 1-O-(l-Arginyl)-2,3-O-dilauroyl-sn-glycerol in Aqueous Solution, Langmuir, Volume 22 (2006) no. 24, p. 10170 | DOI:10.1021/la0612217
  • Dirk Blunk; Patric Bierganns; Nils Bongartz; Renate Tessendorf; Cosima Stubenrauch New speciality surfactants with natural structural motifs, New Journal of Chemistry, Volume 30 (2006) no. 12, p. 1705 | DOI:10.1039/b610045g
  • Rodrigo O. Brito; Eduardo F. Marques; Paula Gomes; Soraia Falcão; Olle Söderman Self-Assembly in a Catanionic Mixture with an Aminoacid-Derived Surfactant:  From Mixed Micelles to Spontaneous Vesicles, The Journal of Physical Chemistry B, Volume 110 (2006) no. 37, p. 18158 | DOI:10.1021/jp061946j
  • Valery M. Dembitsky Astonishing diversity of natural surfactants: 4. Fatty acid amide glycosides, their analogs and derivatives, Lipids, Volume 40 (2005) no. 7, p. 641 | DOI:10.1007/s11745-005-1427-8

Cité par 139 documents. Sources : Crossref


Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: