Plan
Comptes Rendus

Resonance Raman spectroscopy as a probe of the crystallite size of MoS2 nanoparticles
Comptes Rendus. Chimie, Catalysis : from academic research to industrial applications, Volume 19 (2016) no. 10, pp. 1310-1314.

Résumé

Irregularly shaped and inorganic fullerene-like MoS2 compounds were characterized by Resonance Raman spectroscopy using an exciting line at 633 nm. It was shown that the relative intensity of the longitudinal acoustic mode at 226 cm−1 and its overtone strongly depends on the MoS2 crystallite size but not on the size of the particles made of agglomerated crystallites. This technique appeared as a promising probe to characterize in situ very small crystallites that are not observed by XRD.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crci.2015.08.014
Keywords: MoS2, Resonance Raman spectroscopy, Crystallite size, Nanoparticles, Inorganic fullerene

Élodie Blanco 1 ; Pavel Afanasiev 1 ; Gilles Berhault 1 ; Denis Uzio 2 ; Stéphane Loridant 1

1 IRCELYON, CNRS, University of Lyon 1, 2, av. Albert-Einstein, 69626 Villeurbanne, France
2 IFP Énergies Nouvelles, rond-point de l'Échangeur de Solaize, BP 3, 69360 Solaize, France
@article{CRCHIM_2016__19_10_1310_0,
     author = {\'Elodie Blanco and Pavel Afanasiev and Gilles Berhault and Denis Uzio and St\'ephane Loridant},
     title = {Resonance {Raman} spectroscopy as a probe of the crystallite size of {MoS\protect\textsubscript{2}} nanoparticles},
     journal = {Comptes Rendus. Chimie},
     pages = {1310--1314},
     publisher = {Elsevier},
     volume = {19},
     number = {10},
     year = {2016},
     doi = {10.1016/j.crci.2015.08.014},
     language = {en},
}
TY  - JOUR
AU  - Élodie Blanco
AU  - Pavel Afanasiev
AU  - Gilles Berhault
AU  - Denis Uzio
AU  - Stéphane Loridant
TI  - Resonance Raman spectroscopy as a probe of the crystallite size of MoS2 nanoparticles
JO  - Comptes Rendus. Chimie
PY  - 2016
SP  - 1310
EP  - 1314
VL  - 19
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crci.2015.08.014
LA  - en
ID  - CRCHIM_2016__19_10_1310_0
ER  - 
%0 Journal Article
%A Élodie Blanco
%A Pavel Afanasiev
%A Gilles Berhault
%A Denis Uzio
%A Stéphane Loridant
%T Resonance Raman spectroscopy as a probe of the crystallite size of MoS2 nanoparticles
%J Comptes Rendus. Chimie
%D 2016
%P 1310-1314
%V 19
%N 10
%I Elsevier
%R 10.1016/j.crci.2015.08.014
%G en
%F CRCHIM_2016__19_10_1310_0
Élodie Blanco; Pavel Afanasiev; Gilles Berhault; Denis Uzio; Stéphane Loridant. Resonance Raman spectroscopy as a probe of the crystallite size of MoS2 nanoparticles. Comptes Rendus. Chimie, Catalysis : from academic research to industrial applications, Volume 19 (2016) no. 10, pp. 1310-1314. doi : 10.1016/j.crci.2015.08.014. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2015.08.014/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

Molybdenum disulfide MoS2 is an important inorganic material mainly studied as a heterogeneous catalysts, electrocatalysts, photocatalysts, lubricants, anode materials for Li-ion batteries, photoluminescent material, and polymer composites [1]. For all these applications, particular properties can be obtained at the nano-scale level and therefore structural characterization of MoS2 nanostructures is required.

In the literature, non-resonant Raman spectroscopy has been widely used to characterize MoS2 thin films. In particular, the dependence of the A1g and E2g vibrational modes was investigated depending on the number of MoS2 layers [2–5], on interaction with a sapphire or SiO2 substrate [6,7] or for probing van der Waals forces acting between two atomically thin crystals [8]. For nano-crystallized MoS2 films, additional Raman modes associated with the folding of the Brillouin zone along certain directions were observed in comparison to bulk MoS2 [9] but their application was limited due to small inherent intensity.

The resonance Raman effect is a particular case of Raman scattering taking place when the wavelength of the exciting line is in resonance with the electronic absorption of the sample: the vibrations involved in the electronic transition are then strongly enhanced [10,11]. Hence, the use of resonance conditions allows probing both changes of structural and electronic states.

The Raman and resonance Raman spectra of MoS2 nanoparticles were compared in previous studies [12,13]: using resonance conditions, several additional first-order and enhanced second order bands were observed. Some of them corresponding to phonons in the vicinity of the Brillouin zone edge are believed to be disorder induced [13]. Therefore, resonance Raman spectroscopy can be used to detect structural defects or conversely to check for a good crystallinity as it was done for MoS2 nanotubes [14]. Furthermore, a relationship between the intensity ratio of the bands at 455 and 465 cm−1 and the particle size was established [13,15]. In another study, this ratio was shown to increase by decreasing the number of MoS2 layers [5]. However, most phonon modes are significantly broadened or strongly suppressed in single-layer MoS2 under resonance conditions [12].

In this work, two series of fullerene like (IF) MoS2 issued from core shell ZnS@MoS2 preparation and irregularly shaped MoS2 particles (ex ammonium thiomolybdate, ATM) have been characterized by resonance Raman spectroscopy after sulphidation at different temperatures. The main enquiry was on the presence and origin of morphology induced particular features of Raman spectra.

2 Experimental part

The preparation of fullerene-like MoS2 by thermal decomposition of ammonium tetrathiomolybdate, (NH4)2MoS4, (ATM) has been previously described [16]. ATM dark red crystals were obtained by addition of 15 g of (NH4)6Mo7O24·4H2O to 200 mL of a 20 wt% solution of (NH4)2S upon stirring at ambient temperature. The precipitate was filtered off, washed with ethanol, and dried. ATM was decomposed under a H2S/H2 (15% v/v in H2S) flow at different temperatures. These compounds are labeled MoS2-ATM-T where T corresponds to the decomposition temperature.

The preparation of core shell ZnS@MoS2 solids has been detailed elsewhere [1]. Briefly, two solutions pre-heated at 180 °C in ethylene glycol (EG), one of ammonium heptamolybdate and the other one containing ZnS seed, were added to a boiling EG solution of elemental sulfur. The Zn/Mo molar ratio was fixed at 1. The brown powder obtained after 1 h at reflux was then separated and thermally treated under H2S/H2 (8% vol in H2S) at different temperatures. These compounds that corresponded to fullerene-like compounds [1] are labeled MoS2-IF-T where T corresponds to the decomposition temperature.

Transmission Electron Microscopy (TEM) was carried out on a JEOL 2010 device with an accelerating voltage of 200 keV. The samples were dispersed in n-hexane by using ultrasound, and then put onto a porous carbon filament on a copper grid sample holder. In order to protect them from oxidation by air, the samples still covered with liquid hexane were immediately introduced into the TEM vacuum chamber.

The X-ray diffraction (XRD) patterns were obtained on a Bruker diffractometer with Cu Kα emission and identified using standard ICDD files. The mean crystallite size was determined using the Scherrer equation: D110=k110λβ110cosθ where D110 is the dimension of the platelet, λ is the wavelength of X-rays, Θ is the diffraction angle near 14° (2Θ) and β110 (or FWHM) is the angular line width. The shape factor k110 was equal to 1.32 [17,18]. The mean stacking along the c direction was calculated from a similar equation: D002=k002λβ002cosθ where D002 is the crystallite dimension along the c direction, λ is the wavelength of X-rays, Θ is the diffraction angle near 59–60° (2Θ) and β002 (or FWHM) is the angular line width. The shape factor k002 was equal to 0.76 [17,18].

Raman spectra were recorded with a LabRam HR Raman spectrometer (Horiba-Jobin Yvon) equipped with a BXFM confocal microscope, interference and edge filters and a charge-coupled device detector. The exciting line of an Ar+ ion laser at 514.5 nm or a He–Ne laser at 632.8 nm was focused using a ×50 long working distance objective. The backscattered light was dispersed with a grating of 1800 grooves mm−1 providing a spectral resolution of 1 cm−1. The position of bands was previously calibrated from the 521 cm−1 band of the Si plate.

3 Results

The fullerene-like MoS2 compounds contained a ZnS phase as an impurity in the form of large (micron-size) crystallites, present due to the preparation technique. In both the cases of MoS2-IF and MoS2-ATM, increasing the treatment temperature was shown to favor the MoS2 crystalline growth and closure of the slabs [1,16], whereas the size of particles made by the stacking of MoS2 slabs did not vary strongly as shown in TEM images (Fig. 1).

Fig. 1

TEM images of (a) MoS2-ATM-400, (b) MoS2-ATM-550, (c) MoS2-ATM-750, (d) MoS2-IF-400, (e) MoS2-IF-550 and (f) MoS2-IF-750.

The comparison of the Raman spectra of MoS2-IF-750 achieved with different exciting lines (Fig. 2) confirmed that mainly the E2g and A1g modes at 384 and 408 cm−1, respectively [13,19] are observed using non-resonant conditions (514.5 nm). The E1g mode near 285 cm−1 (Fig. 2) is also Raman active in bulk 2H MoS2 because it is located at the Γ point in the hexagonal Brillouin zone [13,19]. As this mode is forbidden in backscattering experiments on a surface perpendicular to the c axis [13], its observation revealed that the MoS2 layers were not perpendicular to the laser but were randomly oriented (no polarization effect).

Fig. 2

Comparison of non-resonant (514.5 nm) and resonant (632.8 nm) Raman spectra of the MoS2-IF-750 sample.

Additional bands were observed using resonant conditions (632.8 nm). These bands were not due to ZnS since its main band located at 348 cm−1 [20] was not observed. Hence, micron-size standalone ZnS crystallites do not interfere with Raman observations of MoS2. Table 1 gathers the assignments of the observed MoS2 Raman bands from the literature [13,15,21,22]. The band at 227 cm−1 was proposed to be induced by disorder similar to nano-crystallized graphite or SiC [23,24] and corresponds to a longitudinal acoustic mode (LA) located at the M point of the Brillouin zone [13]. This mode observed at 514.5 nm (Fig. 2) would be enhanced at 632.8 nm because of the modification of the electronic band structure of small particles leading to higher resonance. Note that the LA(M) mode was not observed under resonance conditions for MoS2 nanoparticles [15] and was very weak for few layer MoS2 [5]. It is clearly evidenced that resonance conditions are not enough to observe the band at 226 cm−1 with high relative intensity. The second order band at 419 cm−1 depends on the electronic state of MoS2 [13,25] as well as the A2u mode at 468 cm−1 which is only IR active under non-resonant conditions [13]. Finally, the bands at higher wavenumbers were attributed to combinations or overtones. In particular, the band at 453 cm−1 corresponds to the overtone of the one at 226 cm−1 (2 × LA(M)) and is enhanced under resonance conditions by coupling to electronic transitions associated with the excitonic states [26].

Table 1

Assignments of MoS2 Raman bands.

Wavenumber (cm−1)Assignment
189A1g(M)-LA(M)
227LA (M)
285E1g(Γ)
384E2g(Γ)
408A1g(Γ)
419B2g + E1u(Γ-A)
4532 × LA(M)
468A2u(Γ)
528E1g(Μ) + LA(M)
5682 × E1g(Γ)
600E2g(M) + LA(M)
642A1g(M) + LA(M)

The resonance Raman spectra of the MoS2-ATM and MoS2-IF series are compared in Fig. 3. The wavenumbers of the A1g and E2g modes were close to the bulk ones [3,18] for MoS2-ATM-750 and MoS2-IF-750 (385 and 408 cm−1, respectively). However, they were red-shifted for the others. The effect of the laser has to be ruled out since it was negligible for the power value used (100 μW). Furthermore, similar red-shifts were previously observed for MoS2-IF samples [13,15]. They cannot also arise from low stacking since it was equal to 5.1 for MoS2-ATM-400 and higher than 6 for the other samples. One can notice that the relationship between the wavenumber difference Δω(A1g–E2g) and the N stacking value (Δω(A1g–E2g) = 25.8–8.4/N) established for MoS2 large layers [3] does not work in our case. As an out-of-plane strain induces a blue-shift of the two bands, like that for MoS2 nanotubes [14,27], such explanation was also ruled out. In fact, the red-shifts could be explained by in-plane compressive strains [27] between small MoS2 platelets agglomerated in particles.

Fig. 3

Raman spectra of (a) MoS2-ATM-400, (b) MoS2-ATM-550, (c) MoS2-ATM-750, (d) MoS2-IF-400, (e) MoS2-IF-500, (f) MoS2-IF-600, and (g) MoS2-IF-750.

Fig. 3 also evidences that the high relative intensity of the bands at 228 and 456 cm−1 is not specific to small fullerene-like MoS2 compounds. It is also important to notice that the band at 495 cm−1, claimed to be typical of fullerenes [28], has not been observed in the present study. However, the spectrum of MoS2-ATM-400 contained a small band at 483 cm−1 that could be attributed to the presence of defects [13] possibly located at the grain boundary. Furthermore, MoS2-IF-550 and MoS2-IF-750 exhibited very different relative intensities of the bands at 228 and 456 cm−1 in spite of similar particle sizes (Fig. 1). Hence, the particle size appeared to be a parameter not determining their relative intensities. Furthermore, it clearly appeared that they strongly diminished with the sulphidation temperature (Fig. 3). As the crystallite size strongly increased with the sulphidation temperature [1,16], the relative intensity of the band at 228 cm−1 was plotted as a function of this parameter deduced from XRD (Fig. 4): a clear decreasing correlation was established for the first time. It showed that this parameter was the key contrarily to the particle size. However, it is influenced by another parameter since an intensity ratio of 1.28 was determined for MoS2-ATM-400 at ca 5 nm instead of 0.42 for MoS2-IF-500 samples having the same crystallite size. Considering that relative intensity of the band at 228 cm−1 (and of its overtone) is influenced at low stacking [5], the higher intensity observed for MoS2-ATM-400 could arise from a mean stacking of only 5.1. The influence of the stacking could be negligible otherwise since this parameter was equal to 6.5 for MoS2-IF-400 and higher than 7.5 for the other samples.

Fig. 4

Evolution of the I(228 cm−1)/I(405 cm−1) intensity ratio versus the MoS2 crystallite size deduced from the (110) XRD band.

4 Conclusion

As a conclusion, resonance Raman spectroscopy appeared as a powerful technique to probe the MoS2 crystallite size from the relative intensity of the mode at 226 cm−1 activated under resonance conditions. It should be of particular interest for supported MoS2 catalysts which contain very small crystallites that cannot be observed by X-ray diffraction or by standard transmission electron microscopy [29]. In particular, the MoS2 dispersion could be evaluated in situ by this technique [30].


Bibliographie

[1] E. Blanco; D. Uzio; G. Berhault; P. Afanasiev J. Mater. Chem. A, 2 (2014), pp. 3325-3331

[2] C. Lee; H. Yan; L.E. Brus; T.F. Heinz; J. Hone; S. Ryu ACS Nano, 4 (2010), pp. 2695-2700

[3] X. Zhang; X.-F. Qiao; W. Shi; J.-B. Wu; D.-S. Jiang; P.-H. Tan Chem. Soc. Rev., 44 (2015), pp. 2757-2785

[4] J. Tao; J. Chai; X. Lu; L.M. Wong; T.I. Wong; J. Pan; Q. Xiong; D. Chi; S. Wang Nanoscale, 7 (2015), pp. 2497-2503

[5] B. Chakraborty; H.S.S. Ramakrishna Matte; A.K. Sood; C.;N.R. Rao J. Raman Spectrosc., 44 (2013), pp. 92-96

[6] H. Liu; A.K.K. Antwi; J. Ying; S. Chua; D. Chi Nanotechnology, 25 (2014), p. 405702

[7] L. Su; Y. Zhang; Y. Yu; L. Cao Nanoscale, 6 (2014), pp. 4920-4927

[8] K.-G. Zhou; F. Withers; Y. Cao; S. Hu; G. Yu; C. Casiraghi ACS Nano, 8 (2014), pp. 9914-9924

[9] A.P.S. Gaur; S. Sahoo; M. Ahmadi; M.J.-F. Guinel; S.K. Gupta; R. Pandey; S.K. Dey; R.S. Katiyar J. Phys. Chem. C, 117 (2013), pp. 26262-26268

[10] A. Myers Kelley J. Phys. Chem. A, 112 (2008), pp. 11975-11991

[11] P.C. Stair Adv. Catal., 51 (2007), pp. 75-98

[12] J.-H. Fan; P. Gao; A.-M. Zhang; B.-R. Zhu; H.-L. Zeng; X.-D. Cui; R. He; Q.-M. Zhang J. Appl. Phys., 115 (2014), p. 053527

[13] G.L. Frey; R. Tenne; M.J. Matthews; M.S. Dresselhaus; G. Dresselhaus Phys. Rev. B, 60 (1999), pp. 2883-2892

[14] M. Virsek; A. Jesih; I. Milosevic; M. Damnjanovic; M. Remskar Surf. Sci., 601 (2007), pp. 2868-2872

[15] H. Wu; R. Yang; B. Song; Q. Han; J. Li; Y. Zhang; Y. Fang; R. Tenne; C. Wang ACS Nano, 5 (2011), pp. 1276-1281

[16] P. Afanasiev J. Catal., 269 (2010), pp. 269-280

[17] G. Berhault; M. Perez De la Rosa; A. Mehta; M.J. Yácaman; R.R. Chianelli Appl. Catal., A, 345 (2008), pp. 80-88

[18] K.S. Liang; R.R. Chianelli; F.Z. Chien; S.C. Moss J. Non-Cryst. Solids, 79 (1986), pp. 251-273

[19] M.P. Deshpande; S.V. Bhatt; V. Sathe; B.H. Soni; N. Garg; S.H. Chaki, Solid State Physics: Proceeding of the 57th Solid State Physics Symposium 2012, Mumbai, India, AIP Conf. Proceedings, vol. 1512, 2013, pp. 808-809

[20] A. Fairbrother; V. Izquierdo-Roca; X. Fontané; M. Ibáñez; A. Cabot; E. Saucedo; A. Pérez-Rodríguezac CrystEngComm, 16 (2014), pp. 4120-4125

[21] K. Gołasa; M. Grzeszczyk; P. Leszczynski; C. Faugeras; A.A.L. Nicolet; A. Wysmołek; M. Potemski; A. Babinski Appl. Phys. Lett., 104 (2014), p. 092106

[22] J.M. Chen; C.S. Wang Solid State Commun., 14 (1974), pp. 857-860

[23] G. Gouadec; P. Colomban Prog. Cryst. Growth Charact. Mater, 53 (2007), pp. 1-56

[24] S. Karlin; Ph. Colomban J. Raman Spectrosc., 28 (1997), pp. 219-228

[25] T. Sekine; K. Uchinokura; T. Nakashizu; E. Matsuura; R. Yoshizaki J. Phys. Soc. Jap., 53 (1984), pp. 811-818

[26] A.M. Stacy; D.T. Hodul J. Phys. Chem. Solids, 46 (1985), pp. 405-409

[27] L. Yang; X. Cui; J. Zhang; K. Wang; M. Shen; S. Zeng; S.A. Dayeh; L. Feng; B. Xiang Scientific Rep., 4 (2014), p. 5649

[28] M. Remskar; A. Mrzel; M. Virsek; A. Jesih Adv. Mater., 19 (2007), pp. 4276-4278

[29] V.O. Koroteev; D.A. Bulushev; A.L. Chuvilin; A.V. Okotrub; L.G. Bulusheva ACS Catal., 4 (2014), pp. 3950-3956

[30] C. Legens; P. Raybaud Catalysis by Transition Metal Sulphides: From Molecular Theory to Industrial Application, Editions Technip (H. Toulhoat; P. Raybaud, eds.), 2013, pp. 283-284


Cité par

  • Oleg Babčenko; Michaela Sojková; Martin Hulman; Jan Čermák; Alexander Kromka; Victor E.P. Claerbout; Paolo Nicolini; Diego López-Carballeira; Jaroslav Kuliček; Bohuslav Rezek Self-Oriented MoS2 Nanosheets on Microcrystalline Diamond Layers: Controlled Synthesis and Optoelectronic Effects, ACS Applied Electronic Materials, Volume 7 (2025) no. 3, p. 1004 | DOI:10.1021/acsaelm.4c01704
  • Alexander V Okotrub; Anastasiya D Fedorenko; Anna A Makarova; Veronica S, Sulyaeva; Yuliya V Fedoseeva; Lyubov G Bulusheva Synchrotron X-ray photoelectron spectroscopy study of sodium adsorption on vertically arranged MoS2 layers coated with pyrolytic carbon, Beilstein Journal of Nanotechnology, Volume 16 (2025), p. 847 | DOI:10.3762/bjnano.16.64
  • Aljaž Drnovšek; Damjan Vengust; Patrik Šumandl; Domen Korbar; Aleš Mrzel; Mojca Vilfan Facile Synthesis Route for Bulk Production of Complex Fullerene‐Like MoS2 Nanostructures With Enhanced Tribological Properties, ChemPlusChem, Volume 90 (2025) no. 1 | DOI:10.1002/cplu.202400480
  • Wan-Yi Chen; Yin-An Yang; I-Wen Peter Chen Nanosheet-engineered CoZMNS@NF heterostructure catalysts for seawater electrolysis toward sustainable hydrogen production, Chemical Engineering Journal (2025), p. 166045 | DOI:10.1016/j.cej.2025.166045
  • Qiyan Wang; Ni Su; Mengya Lv; Yu Wang; Guobi Chai; Wu Fan; Bingyang He; Ronghan Wei; Qidong Zhang Stoichiometric inhibition of sulfur oxidation triggers dual signals for electrochemical ultrasensitive detection and visualization of monoamine neurotransmitters in MoS2, Chemical Engineering Journal, Volume 507 (2025), p. 160267 | DOI:10.1016/j.cej.2025.160267
  • J. Aliaga; N. Chamorro; M. Alegría; J.F. Araya; F. Paraguay-Delgado; G. Alonso-Núñez; G. González; E. Benavente Rhenium-doped MoS2 3D-flower-like nanosheets on 2D-TiO2 core-shell for synergistic photocatalytic degradation of RhB under visible light, Materials Today Communications, Volume 44 (2025), p. 111961 | DOI:10.1016/j.mtcomm.2025.111961
  • Rodrigo Coelho; Duarte Moço; Ana I. de Sá; Paulo P. da Luz; Filipe Neves; Maria de Fátima Cerqueira; Elsa B. Lopes; Francisco P. Brito; Panagiotis Mangelis; Theodora Kyratsi; António P. Gonçalves Tetrahedrite Nanocomposites for High Performance Thermoelectrics, Nanomaterials, Volume 15 (2025) no. 5, p. 351 | DOI:10.3390/nano15050351
  • Maria K. Ramos; Aldo J. G. Zarbin Eco-friendly, transparent, flexible and aqueous sodium-ion battery, Sustainable Energy Fuels (2025) | DOI:10.1039/d5se00665a
  • Lyubov G. Bulusheva; Alena A. Zaguzina; Anastasiya D. Fedorenko; Galina I. Semushkina; Artem V. Gusel'nikov; Yury V. Shubin; Anton D. Nikolenko; Alexander V. Okotrub X‐Ray Absorption and X‐Ray Emission Spectroscopy Study of a Molybdenum Disulfide Anode in a Sodium‐Ion Half‐Cell, physica status solidi (b), Volume 262 (2025) no. 3 | DOI:10.1002/pssb.202400272
  • Niracha Tangyen; Wuttichai Natongchai; Silvano Del Gobbo; Valerio D’Elia Revisiting the Potential of Group VI Inorganic Precatalysts for the Ethenolysis of Fatty Acids through a Mechanochemical Approach, ACS Omega, Volume 9 (2024) no. 17, p. 19712 | DOI:10.1021/acsomega.4c02190
  • Julia Jagosz; Leander Willeke; Nils Gerke; Malte J. M. J. Becher; Paul Plate; Aleksander Kostka; Detlef Rogalla; Andreas Ostendorf; Claudia Bock Wafer‐Scale Demonstration of Polycrystalline MoS2 Growth on 200 mm Glass and SiO2/Si Substrates by Plasma‐Enhanced Atomic Layer Deposition, Advanced Materials Technologies, Volume 9 (2024) no. 22 | DOI:10.1002/admt.202400492
  • Islam Ibrahim; Pinelopi P. Falara; Elias Sakellis; Maria Antoniadou; Chrysoula Athanasekou; Michalis K. Arfanis Novel Bi-Functional MoS2/α-Fe2O3 Nanocomposites for High Photocatalytic Performance, ChemEngineering, Volume 8 (2024) no. 1, p. 20 | DOI:10.3390/chemengineering8010020
  • Ning Pu; Anpeng Hu; Qinghe Yang; Aiguo Zheng; Lulu Chen; Zhen Wang; Yichao Huang; Shibin Wang; Dawei Hu; Hong Nie Atomic decoration of MoS2 using Fe, Co or Ni for highly efficient and selective hydrodesulfurization, Chemical Engineering Journal, Volume 499 (2024), p. 156100 | DOI:10.1016/j.cej.2024.156100
  • Beatriz Pinto de Sousa; Sara Fateixa; Tito Trindade Surface‐Enhanced Raman Scattering Using 2D Materials, Chemistry – A European Journal, Volume 30 (2024) no. 31 | DOI:10.1002/chem.202303658
  • Aleksandra M. Krajewska; Aislan Esmeraldo Paiva; Michael Morris; Aidan R. McDonald Reduction of Exfoliated MoS2 Nanosheets Yields the Semi‐Conducting 2H‐polymorph Rather Than the Metallic 1T‐polymorph, European Journal of Inorganic Chemistry (2024) | DOI:10.1002/ejic.202400292
  • Daria Ryaboshapka; Pavel Afanasiev One-pot synthesis of amorphous high entropy Mo–C–N–O–S solids with ultradispersed Mo sites, Journal of Materials Science, Volume 59 (2024) no. 45, p. 20982 | DOI:10.1007/s10853-024-10428-7
  • Francisco Ascencio; Lucia Rangel-Gamboa; Brayan Maqueda-Cabrera; Cristina Zorrilla; Raúl Herrera; Rubén Mendoza-Cruz Structural and vibrational study of porous CeO2 nanoparticles, Materials Chemistry and Physics, Volume 311 (2024), p. 128492 | DOI:10.1016/j.matchemphys.2023.128492
  • Ilya A. Zavidovskiy; Ilya V. Martynov; Daniil I. Tselikov; Alexander V. Syuy; Anton A. Popov; Sergey M. Novikov; Andrei V. Kabashin; Aleksey V. Arsenin; Gleb I. Tselikov; Valentyn S. Volkov; Alexey D. Bolshakov Leveraging Femtosecond Laser Ablation for Tunable Near-Infrared Optical Properties in MoS2-Gold Nanocomposites, Nanomaterials, Volume 14 (2024) no. 23, p. 1961 | DOI:10.3390/nano14231961
  • Shubham Saxena; Tewodros Belay Ashagre; Dibakar Rakshit; Samaresh Das; Valipe Ramgopal Rao, 2023 IEEE Applied Sensing Conference (APSCON) (2023), p. 1 | DOI:10.1109/apscon56343.2023.10101248
  • Nuria Jiménez-Arévalo; Jinan H. Al Shuhaib; Rodrigo Bautista Pacheco; Dario Marchiani; Mahmoud M. Saad Abdelnabi; Riccardo Frisenda; Marco Sbroscia; Maria Grazia Betti; Carlo Mariani; Yolanda Manzanares-Negro; Cristina Gómez Navarro; Antonio J. Martínez-Galera; José Ramón Ares; Isabel J. Ferrer; Fabrice Leardini MoS2 Photoelectrodes for Hydrogen Production: Tuning the S-Vacancy Content in Highly Homogeneous Ultrathin Nanocrystals, ACS Applied Materials Interfaces, Volume 15 (2023) no. 28, p. 33514 | DOI:10.1021/acsami.3c02192
  • Navid Solati; Cüneyt Karakaya; Sarp Kaya Advancing the Understanding of the Structure–Activity–Durability Relation of 2D MoS2 for the Hydrogen Evolution Reaction, ACS Catalysis, Volume 13 (2023) no. 1, p. 342 | DOI:10.1021/acscatal.2c03719
  • Daria Ryaboshapka; Thomas Len; Pascal Bargiela; Mimoun Aouine; Christophe Geantet; Valerie Briois; Laurent Piccolo; Pavel Afanasiev Genesis of Active Phase and Support Effect in Ultradispersed Mo Sulfide Catalysts, ACS Catalysis, Volume 13 (2023) no. 15, p. 10511 | DOI:10.1021/acscatal.3c01672
  • Roman I. Romanov; Ivan V. Zabrosaev; Maxim G. Kozodaev; Dmitry I. Yakubovsky; Mikhail K. Tatmyshevskiy; Aleksey A. Timofeev; Natalia V. Doroshina; Sergey M. Novikov; Valentyn S. Volkov; Andrey M. Markeev Stabilization of the Nano-Sized 1T Phase through Rhenium Doping in the Metal–Organic CVD MoS2 Films, ACS Omega, Volume 8 (2023) no. 19, p. 16579 | DOI:10.1021/acsomega.2c06794
  • Tuyet Nhung Pham; Ong Van Hoang; Tien Van Manh; Nguyen Le Nhat Trang; Vu Thi Kim Oanh; Vu Dinh Lam; Vu Ngoc Phan; Anh-Tuan Le An insight of light-enhanced electrochemical kinetic behaviors and interfacial charge transfer of CuInS2/MoS2-based sensing nanoplatform for ultra-sensitive detection of chloramphenicol, Analytica Chimica Acta, Volume 1270 (2023), p. 341475 | DOI:10.1016/j.aca.2023.341475
  • Qing-rui Zeng; Zi-ang Jia; Xu Liu; Bo-wen Xiu; Jin-ping Cheng Multi-Interface polarization engineering constructed 1T-2H MoS2 QDs/Y-NaBi(MoO4)2 multiple heterostructure for high-efficient piezoelectric-photoelectrocatalysis PDE-5i degradation, Applied Catalysis B: Environmental, Volume 327 (2023), p. 122460 | DOI:10.1016/j.apcatb.2023.122460
  • Sylwia Kozdra; Adrianna Wójcik; Tamal Das; Paweł Piotr Michałowski From DFT investigations of oxygen-implanted molybdenum disulfide to temperature-induced stabilization of MoS2/MoO3 heterostructure, Applied Surface Science, Volume 631 (2023), p. 157547 | DOI:10.1016/j.apsusc.2023.157547
  • Dario F. Zambrano-Mera; Martin I. Broens; Roberto Villarroel; Rodrigo Espinoza-Gonzalez; José Y. Aguilar-Hurtado; Bo Wang; Sebastián Suarez; Frank Mücklich; Paulina Valenzuela; William Gacitúa; Andreas Rosenkranz Solid lubrication performance of sandwich Ti3C2Tx-MoS2 composite coatings, Applied Surface Science, Volume 640 (2023), p. 158295 | DOI:10.1016/j.apsusc.2023.158295
  • Neha Dhiman; Sudhakara Reddy Yenumala; Deepti Agrawal; Ankit Pandey; Jyoti Porwal; Bipul Sarkar Production of acrylic acid from Bio-Derived lactic acid over a Defect-Rich molybdenum phosphosulfide catalyst, Chemical Engineering Journal, Volume 466 (2023), p. 143240 | DOI:10.1016/j.cej.2023.143240
  • Raheela Naz; Waseem Abbas; Qinglei Liu; Sameera Shafi; Sehrish Gull; Suleman Khan; Tahir Rasheed; Guofen Song; Jiajun Gu Covalent functionalization of electrochemically exfoliated 1T-MoS2 nanosheets for high-performance supercapacitor electrode, Journal of Alloys and Compounds, Volume 951 (2023), p. 169944 | DOI:10.1016/j.jallcom.2023.169944
  • Jaspal Singh; Sophia Akhtar; Trang Thu Tran; Jeongyong Kim MoS2 nanoflowers functionalized with C3N4 nanosheets for enhanced photodecomposition, Journal of Alloys and Compounds, Volume 954 (2023), p. 170206 | DOI:10.1016/j.jallcom.2023.170206
  • Roman I. Romanov; Ivan V. Zabrosaev; Anastasia A. Chouprik; Dmitry I. Yakubovsky; Mikhail K. Tatmyshevskiy; Valentyn S. Volkov; Andrey M. Markeev Temperature-Dependent Structural and Electrical Properties of Metal-Organic CVD MoS2 Films, Nanomaterials, Volume 13 (2023) no. 19, p. 2712 | DOI:10.3390/nano13192712
  • Qing-rui Zeng; Zi-ang Jia; Xu Liu; Jin-ping Cheng A novel 1T-2H MoS2/NaBi(MoO4)2 alternating-phase piezoelectric composites for high-efficient ultrasound-drived piezoelectric catalytic removal of Sildenafil, Process Safety and Environmental Protection, Volume 179 (2023), p. 314 | DOI:10.1016/j.psep.2023.09.021
  • Sanjay Bhakhar; Nashreen F. Patel; Pratik M. Pataniya; Shubham Gupta; G.K. Solanki; Prafulla K. Jha Investigation of electron-phonon interaction in Pure and Indium doped MoS2 using temperature dependent Raman Spectra, Surfaces and Interfaces, Volume 36 (2023), p. 102489 | DOI:10.1016/j.surfin.2022.102489
  • Sekhar Chandra Ray Electronic, microstructure, and magnetic performances in MoS2-nanoparticles, Applied Physics A, Volume 128 (2022) no. 9 | DOI:10.1007/s00339-022-05982-3
  • Lam Thuy Thi Mai; Hai Viet Le; Ngan Kim Thi Nguyen; Van La Tran Pham; Thu Anh Thi Nguyen; Nguyen Thanh Le Huynh; Hoang Thai Nguyen Influence of thickness and morphology of MoS2on the performance of counter electrodes in dye-sensitized solar cells, Beilstein Journal of Nanotechnology, Volume 13 (2022), p. 528 | DOI:10.3762/bjnano.13.44
  • Tuan van Nguyen; Mahider Tekalgne; Thang Phan Nguyen; Wenmeng Wang; Sung Hyun Hong; Jin Hyuk Cho; Quyet van Le; Ho Won Jang; Sang Hyun Ahn; Soo Young Kim Control of the morphologies of molybdenum disulfide for hydrogen evolution reaction, International Journal of Energy Research, Volume 46 (2022) no. 8, p. 11479 | DOI:10.1002/er.7896
  • T. Sasikala; K. Shanmugasundaram; P. Thirunavukkarasu; N. Nithya; P. Vivek The influence of Zn on MoS2 thin films by jet nebulizer spray coating method for P-N diode application, Journal of Materials Science: Materials in Electronics, Volume 33 (2022) no. 10, p. 7853 | DOI:10.1007/s10854-022-07936-0
  • Pradeep Kumar; Utkarsh Kumar; Yu-Ching Huang; Po-Yo Tsai; Chia-Hao Liu; Chiu-Hsien Wu; Wen-Min Huang; Kuen-Lin Chen Photocatalytic activity of a hydrothermally synthesized γ-Fe2O3@Au/MoS2 heterostructure for organic dye degradation under green light, Journal of Photochemistry and Photobiology A: Chemistry, Volume 433 (2022), p. 114186 | DOI:10.1016/j.jphotochem.2022.114186
  • Marco Freschi; Alessia Arrigoni; Oskari Haiko; Luca Andena; Jukka Kömi; Chiara Castiglioni; Giovanni Dotelli Physico-Mechanical Properties of Metal Matrix Self-Lubricating Composites Reinforced with Traditional and Nanometric Particles, Lubricants, Volume 10 (2022) no. 3, p. 35 | DOI:10.3390/lubricants10030035
  • Sebastian Thiele; Ilya A. Eliseyev; Alexander N. Smirnov; Heiko O. Jacobs; Valery Y. Davydov; Frank Schwierz; Jörg Pezoldt Electric bias-induced edge degradation of few-layer MoS2 devices, Materials Today: Proceedings, Volume 53 (2022), p. 281 | DOI:10.1016/j.matpr.2021.05.298
  • Shuangyue Wang; Ni Yang; Mengyao Li; Ji Zhang; Ashraful Azam; Yin Yao; Xiaotao Zu; Liang Qiao; Peter Reece; John Stride; Jack Yang; Sean Li Insight into the growth behaviors of MoS2 nanograins influenced by step edges and atomic structure of the substrate, Nano Research, Volume 15 (2022) no. 8, p. 7646 | DOI:10.1007/s12274-022-4373-8
  • Ivan V. Zabrosaev; Maxim G. Kozodaev; Roman I. Romanov; Anna G. Chernikova; Prabhash Mishra; Natalia V. Doroshina; Aleksey V. Arsenin; Valentyn S. Volkov; Alexandra A. Koroleva; Andrey M. Markeev Field-Effect Transistor Based on 2D Microcrystalline MoS2 Film Grown by Sulfurization of Atomically Layer Deposited MoO3, Nanomaterials, Volume 12 (2022) no. 19, p. 3262 | DOI:10.3390/nano12193262
  • Rui Hao; Xiaodie Li; Lingling Zhang; Lei Zhang; Hongjun You; Jixiang Fang Casted MoS2 nanostructures and their Raman properties, Nanoscale, Volume 14 (2022) no. 29, p. 10449 | DOI:10.1039/d2nr02593k
  • Xiaojie Yuan; Jianjun Li; Jialiang Huang; Chang Yan; Xin Cui; Kaiwen Sun; Jialin Cong; Mingrui He; Ao Wang; Guojun He; Arman Mahboubi Soufiani; Junjie Jiang; Shujie Zhou; John A. Stride; Bram Hoex; Martin Green; Xiaojing Hao 10.3 | DOI:10.1002/smll.202204392
  • Samuel J. Brooke; Mark R. Waterland Edge Modes of MoS2 via Indirect Double Resonant Raman Spectroscopy, The Journal of Physical Chemistry C, Volume 126 (2022) no. 30, p. 12592 | DOI:10.1021/acs.jpcc.2c02872
  • Jia-Cheng E. Yang; Min-Ping Zhu; Xiaoguang Duan; Shaobin Wang; Baoling Yuan; Ming-Lai Fu The mechanistic difference of 1T-2H MoS2 homojunctions in persulfates activation: Structure-dependent oxidation pathways, Applied Catalysis B: Environmental, Volume 297 (2021), p. 120460 | DOI:10.1016/j.apcatb.2021.120460
  • T. Sasikala; K. Shanmugasundaram; P. Thirunavukkarasu; J. Chandrasekaran; P. Vivek; R. Marnadu; M. Aslam Manthrammel; S. Gunasekaran Characterization of Jet nebulizer spray pyrolysis coated MoS2 thin films and fabrication of p-Si/n-MoS2 junction diodes for optoelectronic application, Inorganic Chemistry Communications, Volume 130 (2021), p. 108701 | DOI:10.1016/j.inoche.2021.108701
  • Maykel Santos Klem; Gabriel Leonardo Nogueira; Neri Alves High‐performance symmetric supercapacitor based on molybdenum disulfide/poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) composite electrodes deposited by spray‐coating, International Journal of Energy Research, Volume 45 (2021) no. 6, p. 9021 | DOI:10.1002/er.6434
  • Yan Lin; Jie Li; Peijie Wang; Yan Fang Surface-enhanced resonance Raman scattering of MoS2 quantum dots by coating Ag@MQDs on silver electrode with nanoscale roughness, Journal of Luminescence, Volume 230 (2021), p. 117704 | DOI:10.1016/j.jlumin.2020.117704
  • S. Gunasekaran; R. Marnadu; D. Thangaraju; J. Chandrasekaran; H.H. Hegazy; H.H. Somaily; A. Durairajan; M.A. Valente; M. Elango; Vasudeva Reddy Minnam Reddy Development of n-MoO3@MoS2/p-Si heterostructure diode using pre-synthesized core@shell nanocomposite for efficient light harvesting detector application, Materials Science in Semiconductor Processing, Volume 135 (2021), p. 106097 | DOI:10.1016/j.mssp.2021.106097
  • Mina Ebrahimzadeh; Azadeh Haghighatzadeh; Joydeep Dutta Improved third-order optical nonlinearities in Ag/MoS2 Schottky-type nano/hetero-junctions, Optics Laser Technology, Volume 140 (2021), p. 107092 | DOI:10.1016/j.optlastec.2021.107092
  • John F. Curry; Taisuke Ohta; Frank W. DelRio; Philip Mantos; Morgan R. Jones; Tomas F. Babuska; N. Scott Bobbitt; Nicolas Argibay; Brandon A. Krick; Michael T. Dugger; Michael Chandross Structurally Driven Environmental Degradation of Friction in MoS2 Films, Tribology Letters, Volume 69 (2021) no. 3 | DOI:10.1007/s11249-021-01453-7
  • Caroline Moore; Andrew Harvey; Jonathan N Coleman; Hugh J Byrne; Jennifer McIntyre In vitrolocalisation and degradation of few-layer MoS2submicrometric plates in human macrophage-like cells: a label free Raman micro-spectroscopic study, 2D Materials, Volume 7 (2020) no. 2, p. 025003 | DOI:10.1088/2053-1583/ab5d98
  • Svetlana G. Stolyarova; Alena A. Kotsun; Yury V. Shubin; Victor O. Koroteev; Pavel E. Plyusnin; Yuri L. Mikhlin; Maxim S. Mel’gunov; Alexander V. Okotrub; Lyubov G. Bulusheva Synthesis of Porous Nanostructured MoS2 Materials in Thermal Shock Conditions and Their Performance in Lithium-Ion Batteries, ACS Applied Energy Materials, Volume 3 (2020) no. 11, p. 10802 | DOI:10.1021/acsaem.0c01837
  • Guopeng Chen; Guofeng Zhang; Fuchao Yang; Zhiguang Guo Site-specific Positioning of MoS2 on Fabric Weaves by Post Treatment or In-situ Method for Hydrophobic Stability and Photoluminescence Enhancement, Chemistry Letters, Volume 49 (2020) no. 11, p. 1376 | DOI:10.1246/cl.200553
  • Xin Chen; Peter Denninger; Tanja Stimpel‐Lindner; Erdmann Spiecker; Georg S. Duesberg; Claudia Backes; Kathrin C. Knirsch; Andreas Hirsch Defect Engineering of Two‐Dimensional Molybdenum Disulfide, Chemistry – A European Journal, Volume 26 (2020) no. 29, p. 6535 | DOI:10.1002/chem.202000286
  • Emily Cheng; Lauren McCullough; Hyunho Noh; Omar Farha; Joseph Hupp; Justin Notestein Isobutane Dehydrogenation over Bulk and Supported Molybdenum Sulfide Catalysts, Industrial Engineering Chemistry Research, Volume 59 (2020) no. 3, p. 1113 | DOI:10.1021/acs.iecr.9b05844
  • Salomé M. de la Parra-Arciniega; Edgar González-Juárez; Rubi A. Hernández-Carrillo; Ricardo Briones-Martínez; Rosa Martha Jiménez-Barrera; Nora Aleyda Garcia-Gómez; Eduardo M. Sánchez A Mg2+/Li+ hybrid-ion battery based on MoS2 prepared by solvothermal synthesis with ionic liquid assistance, Journal of Materials Science: Materials in Electronics, Volume 31 (2020) no. 17, p. 14702 | DOI:10.1007/s10854-020-04034-x
  • Davi Marcelo Soares; Gurpreet Singh SiOC functionalization of MoS2 as a means to improve stability as sodium-ion battery anode, Nanotechnology, Volume 31 (2020) no. 14, p. 145403 | DOI:10.1088/1361-6528/ab6480
  • Manuel Ramos; John Nogan; Manuela Ortíz-Díaz; José L Enriquez-Carrejo; Claudia A Rodriguez-González; José Mireles-Jr-Garcia; Roberto Carlos Ambrosio-Lazáro; Carlos Ornelas; Abel Hurtado-Macias; Torben Boll; Delphine Chassaing; Martin Heilmaier MoS2 Thin Films for Photo-Voltaic Applications, 2D Materials (2019) | DOI:10.5772/intechopen.83512
  • Félix Galindo-Hernández; Ilke Arslan; José Manuel Domínguez; Manuel Ramos Porosity and Fractality of MoS2 and MoS2/Co-catalytic Spheres, Advanced Catalytic Materials: Current Status and Future Progress (2019), p. 151 | DOI:10.1007/978-3-030-25993-8_7
  • Ngoc-Quynh Bui; Christophe Geantet; Gilles Berhault Activation of regenerated CoMo/Al2O3 hydrotreating catalysts by organic additives – The particular case of maleic acid, Applied Catalysis A: General, Volume 572 (2019), p. 185 | DOI:10.1016/j.apcata.2019.01.006
  • Zhaopeng Liu; Yan Xu; Zhenhua Li; Baowei Wang; Weihan Wang; Xinbin Ma; Renjie Liu Sulfur-resistant methanation over MoO3/CeO2–ZrO2 catalyst: Influence of Ce-addition methods, Journal of Energy Chemistry, Volume 28 (2019), p. 31 | DOI:10.1016/j.jechem.2017.10.008
  • Asad J. Mughal; Timothy N. Walter; Kayla A. Cooley; Adam Bertuch; Suzanne E. Mohney Effect of substrate on the growth and properties of MoS2 thin films grown by plasma-enhanced atomic layer deposition, Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films, Volume 37 (2019) no. 1 | DOI:10.1116/1.5074201
  • Juan Aliaga; Pablo Vera; Juan Araya; Luis Ballesteros; Julio Urzúa; Mario Farías; Francisco Paraguay-Delgado; Gabriel Alonso-Núñez; Guillermo González; Eglantina Benavente Electrochemical Hydrogen Evolution over Hydrothermally Synthesized Re-Doped MoS2 Flower-Like Microspheres, Molecules, Volume 24 (2019) no. 24, p. 4631 | DOI:10.3390/molecules24244631
  • Henning Moldenhauer; Alexandra Wittig; David Kokalj; Dominic Stangier; Andreas Brümmer; Wolfgang Tillmann; Jörg Debus Resonant Raman scattering characterization of thermally annealed HiPIMS deposited MoS coatings, Surface and Coatings Technology, Volume 377 (2019), p. 124891 | DOI:10.1016/j.surfcoat.2019.124891
  • Erika V.C. Robert; René Gunder; Jessica de Wild; Conrad Spindler; Finn Babbe; Hossam Elanzeery; Brahime El Adib; Robert Treharne; Henrique P.C. Miranda; Ludger Wirtz; Susan Schorr; Phillip J. Dale Synthesis, theoretical and experimental characterisation of thin film Cu2Sn1-Ge S3 ternary alloys (x = 0 to 1): Homogeneous intermixing of Sn and Ge, Acta Materialia, Volume 151 (2018), p. 125 | DOI:10.1016/j.actamat.2018.03.043
  • Pavel Afanasiev Topotactic synthesis of size-tuned MoS2 inorganic fullerenes that allows revealing particular catalytic properties of curved basal planes, Applied Catalysis B: Environmental, Volume 227 (2018), p. 44 | DOI:10.1016/j.apcatb.2017.12.012
  • Chen Liu; Weihan Wang; Yan Xu; Zhenhua Li; Baowei Wang; Xinbin Ma Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2 catalyst, Applied Surface Science, Volume 441 (2018), p. 482 | DOI:10.1016/j.apsusc.2018.02.019
  • Juliana Sánchez; Andrés Moreno; Fanor Mondragón; Kevin J. Smith Morphological and Structural Properties of MoS2and MoS2-Amorphous Silica-Alumina Dispersed Catalysts for Slurry-Phase Hydroconversion, Energy Fuels, Volume 32 (2018) no. 6, p. 7066 | DOI:10.1021/acs.energyfuels.8b01081
  • M. G. Donato; E. Messina; A. Foti; T. J. Smart; P. H. Jones; M. A. Iatì; R. Saija; P. G. Gucciardi; O. M. Maragò Optical trapping and optical force positioning of two-dimensional materials, Nanoscale, Volume 10 (2018) no. 3, p. 1245 | DOI:10.1039/c7nr06465a
  • H. K. Sadhanala; Subrata Senapati; Krishna Villa Harika; Karuna Kar Nanda; Aharon Gedanken Green synthesis of MoS2 nanoflowers for efficient degradation of methylene blue and crystal violet dyes under natural sun light conditions, New Journal of Chemistry, Volume 42 (2018) no. 17, p. 14318 | DOI:10.1039/c8nj01731j
  • Kamellia Nejati; Esmail Vessally; Parvaneh Delir Kheirollahi Nezhad; Hadi Mofid; Ahmadreza Bekhradnia The electronic response of pristine, Al and Si doped BC2N nanotubes to a cathinone molecule: Computational study, Journal of Physics and Chemistry of Solids, Volume 111 (2017), p. 238 | DOI:10.1016/j.jpcs.2017.08.005
  • Manuel Ramos; Félix Galindo-Hernández; Ilke Arslan; Toby Sanders; José Manuel Domínguez Electron tomography and fractal aspects of MoS2 and MoS2/Co spheres, Scientific Reports, Volume 7 (2017) no. 1 | DOI:10.1038/s41598-017-12029-8

Cité par 74 documents. Sources : Crossref


Commentaires - Politique