Plan
Comptes Rendus

Three-component synthesis of novel spirooxindole–furan derivatives using pyridinium salts
Comptes Rendus. Chimie, Volume 20 (2017) no. 4, pp. 359-364.

Résumé

A simple and efficient synthesis of novel spirooxindole–furan derivatives has been investigated by a modified version of the“interrupted” Feist–Bénary (IFB) reaction of isatin derivatives, 1,3-dicarbonyl compounds and N-phenacyl pyridinium salts in the presence of triethylamine. The reaction has been carried out under mild conditions in ethanol, and the products were obtained in good to moderate yields with a simple work-up procedure.

Supplementary Materials:
Supplementary material for this article is supplied as a separate file:

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crci.2016.07.001
Mots clés : Spirooxindole, Interrupted Feist–Bénary reaction, Isatin, 1, 3-dicarbonyl compounds, Pyridinium salts
Robabeh Baharfar 1 ; Sakineh Asghari 1 ; Farya Zaheri 1 ; Narges Shariati 1

1 Department of Chemistry, University of Mazandaran, P. O. Box 47415, Babolsar, Iran
@article{CRCHIM_2017__20_4_359_0,
     author = {Robabeh Baharfar and Sakineh Asghari and Farya Zaheri and Narges Shariati},
     title = {Three-component synthesis of novel spirooxindole{\textendash}furan derivatives using pyridinium salts},
     journal = {Comptes Rendus. Chimie},
     pages = {359--364},
     publisher = {Elsevier},
     volume = {20},
     number = {4},
     year = {2017},
     doi = {10.1016/j.crci.2016.07.001},
     language = {en},
}
TY  - JOUR
AU  - Robabeh Baharfar
AU  - Sakineh Asghari
AU  - Farya Zaheri
AU  - Narges Shariati
TI  - Three-component synthesis of novel spirooxindole–furan derivatives using pyridinium salts
JO  - Comptes Rendus. Chimie
PY  - 2017
SP  - 359
EP  - 364
VL  - 20
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crci.2016.07.001
LA  - en
ID  - CRCHIM_2017__20_4_359_0
ER  - 
%0 Journal Article
%A Robabeh Baharfar
%A Sakineh Asghari
%A Farya Zaheri
%A Narges Shariati
%T Three-component synthesis of novel spirooxindole–furan derivatives using pyridinium salts
%J Comptes Rendus. Chimie
%D 2017
%P 359-364
%V 20
%N 4
%I Elsevier
%R 10.1016/j.crci.2016.07.001
%G en
%F CRCHIM_2017__20_4_359_0
Robabeh Baharfar; Sakineh Asghari; Farya Zaheri; Narges Shariati. Three-component synthesis of novel spirooxindole–furan derivatives using pyridinium salts. Comptes Rendus. Chimie, Volume 20 (2017) no. 4, pp. 359-364. doi : 10.1016/j.crci.2016.07.001. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2016.07.001/

Version originale du texte intégral

1 Introduction

The oxindole framework has generated considerable interest as a core constituent of many natural products and biologically active molecules. In particular, spirooxindoles are important heterocyclic compounds due to their various biological and pharmacological properties. They are widely used as antimicrobial [1], antitumor [2], and therapeutic agents [3]. On the other hand, furan derivatives have exhibited attractive biological activities, such as antitumor [4], antimicrobial [5,6], antispasmodic [7] and cytotoxic properties [8]. Also, synthesis and pharmacological application of various spirooxindole–furan derivatives have been reported [9–11].

The interrupted Feist–Bénary reaction (IFB) is a base-catalyzed condensation of α-haloketones with 1,3-dicarbonyl compounds, which form highly substituted dihydrofuran derivatives [12,13]. Recently a modified Feist–Bénary reaction for the synthesis of bisspirooxindole-fused dihydrofurans has been reported [14]. Also a new variant of this reaction has been reported, including α-tosyloxyacetophenones as electrophiles instead of α-haloketones. It has been shown that phenacyl bromides are poor reactants in the Feist–Bénary reaction, but replacing Br with the tosyloxy group has led to good results [15].

In order to expand the scope of the IFB reaction, and in continuation of our previous works for the synthesis of novel heterocyclic compounds [16–19], we report herein an efficient procedure for the synthesis of new spirooxindole–furan derivatives via the Feist–Bénary reaction of N-phenacyl pyridinium salts as a reactive electrophile with 1,3-dicarbonyl compounds and isatin derivatives (Scheme 1).

Scheme 1

Preparation of novel spirooxindole–furan derivatives.

2 Results and discussion

In order to optimize the conditions, we studied the reaction of N-phenacyl pyridinium bromide, dimedone and isatin as the model reaction under various conditions (Table 1). First, the reaction was examined in the presence of different bases. As shown, using triethylamine gave better yields than the other bases (Table 1, entry 5). Then, the effect of various solvents and different temperatures were examined. Using EtOH, the reaction afforded the corresponding product with a good yield (85%) after 10 h at 50 °C (Table 1, entry 5). We also evaluated the amount of triethylamine required for the reaction. It was found that the use of 1 eq of NEt3 is sufficient to promote the reaction. In the presence of more than this amount of the base, neither the yield nor the reaction time was improved.

Table 1

Optimization of the reaction conditions.a

Table 1
EntryBase (eq)SolventTemp. (°C)Time (h)Yields (%)
1EtOH5024
2K2CO3 (1)EtOH501545
3DBU (1)EtOH501560
4DABCO (1)EtOH501865
5NEt3 (1)EtOH501085
6NEt3 (0.25)EtOH502430
7NEt3 (0.5)EtOH502455
8NEt3 (2)EtOH501085
9NEt3 (1)THF501550
10NEt3 (1)H2O501245
11NEt3 (1)DCM501472
12NEt3 (1)502460
13NEt3 (1)EtOH252440
14NEt3 (1)EtOHReflux1080

a Reaction conditions: N-phenacyl pyridinium bromide (1 mmol), dimedone (1 mmol), isatin (1 mmol), different conditions, stirring.

After optimization of the model reaction, a variety of spirooxindole–furan derivatives were synthesized with the three-component reaction of isatin derivatives with 1,3-dicarbonyl compounds and pyridinium salts according to Scheme 1. The target compounds were obtained in good yields with high purity (Table 2). The structure of products was confirmed by IR, 1H and 13C NMR spectroscopy and mass spectrometry.

Table 2

Preparation of spirooxindole–furan derivatives.a

Table 2
EntryR1R2R31,3-dicarbonyl compoundProductTime (h)Mp (°C)Yield (%)
1HHH4a10275–27785
2HCH3CH2H4b12188–19073
3HCH2CO2EtH4c13165–16770
4HHH4d12242–24476
5ClHH4e10260–26380
6BrHH4f10274–27678
7ClCH2CO2EtH4g11158–16074
8ClPhCH2H4h11203–20582
9HHCl4i10248–24980
10HHH4j12245–24770
11HHBr4k10235–23776

a Reaction conditions: N-phenacyl pyridinium bromide derivatives (1 mmol), dimedone (1 mmol), isatin derivatives (1 mmol), triethylamine (1 mmol), EtOH, 50 °C, stirring.

The mass spectrum of 4a displayed the molecular ion (M+) peak at m/z 387, which was consistent with the product's structure. The 1H NMR spectrum of 4a in CDCl3 exhibited two singlets at 1.15 and 1.22 ppm due to the two methyl groups of dimedone, two doublets at 2.14 and 2.31 ppm (2JHH = 16.4 Hz), two doublets 2.65 and 2.68 ppm (2JHH = 18.0 Hz) for diastereotopic protons of two CH2 groups, and one singlet at 6.48 ppm for CH group of furan ring. The aromatic protons appeared as one doublet at 6.45 ppm (3JHH = 7.6 Hz) and four multiplets at around 6.59–7.44 ppm. The proton of NH in oxindole moiety was observed as one broad singlet at 8.10 ppm. The proton-decoupled 13C NMR spectrum of 4a showed 22 distinct resonances, in agreement with the proposed structure. The spiro carbon displayed a signal at 58.9 ppm.

A plausible mechanism for the formation of products 4ak is given in Scheme 2. Initially, Knoevenagel condensation between isatin derivatives and CH-acid of 1,3-dicarbonyl compounds in the presence of triethylamine affords adduct 5. Also the pyridinium salt is deprotonated by triethylamine to give pyridinium ylide 6. In the second step, a Michael addition of the pyridinium ylide 6 to adduct 5 produces dipolar intermediate 7. Finally, the attack of enolate moiety in 7 to the electrophilic carbon bearing the leaving pyridyl group leads to spirooxindole fused furan derivative.

Scheme 2

Proposed mechanism for the preparation of spirooxindole–furan derivatives.

3 Experimental

3.1 Materials and techniques

All chemicals and reagents were purchased from Fluka and Merck and used without further purification. Melting points were measured with an Electrothermal 9100 apparatus. NMR spectra were recorded with a Bruker DRX-400 AVANCE instrument (400.1 MHz for 1H, 100.6 MHz for 13C) with CDCl3 as solvent. Chemical shifts (δ) are given in parts per million (ppm) relative to TMS, and coupling constants (J) are reported in hertz (Hz). IR spectra were recorded on an FT-IR Bruker vector 22 spectrometer. Mass spectra were recorded on a Finnigan-Matt 8430 mass spectrometer operating at an ionization potential of 70 eV.

3.2 General procedure for the synthesis of compounds 4ak

N-Phenacyl pyridinium bromide derivatives were obtained by the reaction of phenacyl bromide derivatives and pyridine in acetonitrile medium. Triethylamine (1 mmol) was added to a mixture of isatin (1 mmol) and 1,3-dicarbonyl compounds (1 mmol) and N-phenacyl pyridinium bromide in ethanol (5 ml) preheated at 50 °C. The reaction mixture was then stirred at 50 °C for appropriate time. After completion of the reaction, monitored by TLC on SiO2 using EtOAc/hexane (1:1) as the eluent, the solvent was removed under reduced pressure and the product was obtained by recrystallization from diethyl ether.

3.3 Physical and spectral data for compounds 4ak

3.3.1 2-Benzoyl-6,6-dimethyl-6,7-dihydro-2H-spiro[benzofuran-3,3′-indoline]-2′,4(5H)-dione (4a)

White powder, mp: 275–277 °C; yield (0.33 g, 85%); IR (KBr) (νmax, cm−1): 3430 (NH), 2939 (Csp3H), 1725, 1696 and 1645 (3CO), 1476 (CC), 1257 (Csp2O), 1065 (Csp3O); 1H NMR (400 MHz, CDCl3), δH (ppm): 1.15 and 1.22 (2s, 6H, 2CH3), 2.14 and 2.31 (2d, 2H, 2JHH = 16.4 Hz, AB-system, CH2), 2.65 and 2.68 (2d, 2H, 2JHH = 18.0 Hz, AB-system, CH2), 6.45 (d, 1H, 3JHH = 7.6 Hz, CHOxindole), 6.48 (s, 1H, CHfuran), 6.86–6.87 (m, 2H, 2CHAr), 6.95–7.00 (m, 1H, CHAr), 7.22–7.28 (m, 2H, 2CHAr), 7.40–7.44 (m, 3H, 3CHAr), 8.10 (br s, 1H, NH); 13C NMR (100 MHz, CDCl3), δC (ppm): 27.7 and 29.5 (2CH3), 34.5 (CMe2), 37.7 and 50.8 (2CH2), 58.9 (Cspiro), 91.4 (CHfuran), 109.8 (CHAr), 114.6 (Cq), 122.8 and 124.7 (2CHAr), 126.5 (Cq), 127.5 and 128.5 (4CHAr), 129.1 and 133.7 (2CHAr), 134.5, 139.8 and 177.4 (3Cq), 178.2 (COamide), 192.2 and 192.3 (2COketone); MS, m/z: 387 (M+).

3.3.2 2-Benzoyl-1′-ethyl-6,6-dimethyl-6,7-dihydro-2H-spiro[benzofuran-3,3′-indoline]-2′,4(5H)-dione (4b)

White powder, mp: 188–190 °C; yield (0.30 g, 73%); IR (KBr) (νmax, cm−1): 2954 (Csp3H), 1709, 1644 and 1612 (3CO), 1223 (Csp2O), 1064 (Csp3O); 1H NMR (400 MHz, CDCl3), δH (ppm): 1.13 (s, 3H, CH3), 1.15 (t, 3H, 3JHH = 7.2 Hz, CH3), 1.20 (s, 3H, CH3), 2.08 and 2.28 (2d, 2H, 2JHH = 16.4 Hz, AB-system, CH2), 2.65 and 2.67 (2d, 2H, 2JHH = 18.0 Hz, AB-system, CH2), 3.49–3.77 (m, 2H, CH2), 6.46 (d, 1H, 3JHH = 7.6 Hz, CHOxindole), 6.47 (s, 1H, CHfuran), 6.88–6.90 (m, 2H, 2CHAr), 7.04–7.08 (m, 1H, CHAr), 7.19–7.23 (m, 2H, 2CHAr), 7.31–7.43 (m, 3H, 3CHAr); 13C NMR (100 MHz, CDCl3), δC (ppm): 12.2, 27.7 and 29.5 (3CH3), 34.5 (CMe2), 35.2, 37.7 and 50.8 (3CH2), 58.6 (Cspiro), 91.4 (CHfuran), 108.0 (CHAr), 114.7 (Cq), 122.7 and 124.6 (2CHAr), 126.4 (Cq), 127.4 and 128.4(4CHAr), 129.0 and 133.5 (2CHAr), 134.8, 141.8 and 175.3 (3Cq), 177.6 (COamide), 191.9 and 192.5 (2COketone); MS, m/z: 415 (M+).

3.3.3 Ethyl 2-(2-benzoyl-6,6-dimethyl-2′,4-dioxo-4,5,6,7-tetrahydro-2H-spiro[benzofuran-3,3′-indoline]-1′-yl)acetate (4c)

White powder, mp: 165–167 °C; yield (0.33 g, 70%); IR (KBr) (νmax, cm−1): 3064 (Csp2H), 2968 (Csp3H), 1751, 1707, 1642 and 1615 (4CO), 1204 (Csp2O), 1061 (Csp2O); 1H NMR (400 MHz, CDCl3), δH (ppm): 1.16 and 1.20 (2s, 6H, 2CH3), 1.30 (t, 3H, 3JHH = 7.2 Hz, CH3), 2.13 and 2.25 (2d, 2H, 2JHH = 16.4 Hz, AB-system, CH2), 2.64 and 2.70 (2d, 2H, 2JHH = 18.0 Hz, AB-system, CH2), 4.22–4.32 (m, 2H, CH2), 4.36 and 4.43 (2d, 2H, 2JHH = 17.2 Hz, AB-system, NCH2), 6.43 (d, 1H, 3JHH = 7.6 Hz, CHOxindole), 6.45 (s, 1H, CHfuran), 6.83–6.91 (m, 2H, 2CHAr), 7.01–7.04 (m, 1H, CHAr), 7.26–7.29 (m, 2H, 2CHAr), 7.41–7.48 (m, 3H, 3CHAr); 13C NMR (100 MHz, CDCl3), δC (ppm): 14.1, 28.0 and 29.1 (3CH3), 34.5 (CMe2), 37.8, 42.0 and 50.9 (3CH2), 58.6 (Cspiro), 61.7 (OCH2), 90.7 (CHfuran), 108.1 (CHAr), 114.4 (Cq), 123.2 and 124.8 (2CHAr), 125.7 (Cq), 127.7 and 128.6 (4CHAr), 129.0 and 133.7 (2CHAr), 134.3 and 141.7 (2Cq), 167.1 (COester), 176.1 (Cq), 178.1 (COamide), 191.7 and 192.0 (2COketone); MS, m/z: 473 (M+).

3.3.4 2-Benzoyl-6,7-dihydro-2H-spiro[benzofuran-3,3′-indoline]-2′,4(5H)-dione (4d)

White powder, mp: 242–244 °C; yield (0.27 g, 76%); IR (KBr) (νmax, cm−1): 3307 (NH), 2929 (Csp3H), 1724, 1702 and 1641 (3CO), 1225 (Csp2O), 1070 (Csp3O); 1H NMR (400 MHz, CDCl3), δH (ppm): 2.07–2.27 (m, 2H, CH2), 2.29–2.41 (m, 2H, CH2), 2.71–2.91 (m, 2H, CH2), 6.45 (d, 1H, 3JHH = 8.4 Hz, CHOxindole), 6.46 (s, 1H, CHfuran), 6.86–6.88 (m, 2H, CHAr), 6.96–6.99 (m, 1H, CHAr), 7.23–7.28 (m, 2H, 2CHAr), 7.39–7.44 (m, 3H, 3CHAr), 7.81 (br s, 1H, NH); 13C NMR (100 MHz, CDCl3), δC (ppm): 21.5, 24.1 and 36.5 (3CH2), 59.0 (Cspiro), 91.2 (CHfuran), 109.6 (CHAr), 116.0 (Cq), 122.8 and 124.9 (2CHAr), 126.5 (Cq), 127.5 and 128.5 (4CHAr), 129.1 and 133.7 (2CHAr), 134.6, 139.6 and 177.4 (3Cq), 179.2 (COamide), 192.3 and 192.7 (2COketone); MS, m/z: 359 (M+).

3.3.5 2-Benzoyl-5′-chloro-6,6-dimethyl-6,7-dihydro-2H-spiro[benzofuran-3,3′-indoline]-2′,4(5H)-dione (4e)

White powder, mp: 260–263 °C; yield (0.34 g, 80%); IR (KBr) (νmax, cm−1): 3291 (NH), 2958 (Csp3H), 1727, 1696 and 1644 (3CO), 1223 (Csp2O), 1065 (Csp3O); 1H NMR (400 MHz, CDCl3), δH (ppm): 1.17 and 1.23 (2s, 6H, 2CH3), 2.17 and 2.29 (2d, 2H, 2JHH = 16.4 Hz, AB-system, CH2), 2.63 and 2.72 (2d, 2H, 2JHH = 18.0 Hz, AB-system, CH2), 6.39 (d, 1H, 3JHH = 8.4 Hz, CHOxindole), 6.46 (s, 1H, CHfuran), 6.85 (d, 1H, 4JHH = 2.0 Hz, CHAr), 6.97 (dd, 1H, 3JHH = 8.4 Hz, 4JHH = 2.0 Hz, CHAr), 7.28 (t, 2H, 3JHH = 8.4 Hz, 2CHAr), 7.44–7.47 (m, 3H, 3CHAr), 7.93 (br s, 1H, NH); 13C NMR (100 MHz, CDCl3), δC (ppm): 28.0 and 29.2 (2CH3), 34.5 (CMe2), 37.7 and 50.8 (2CH2), 58.9 (Cspiro), 91.2 (CHfuran), 110.6 (CHAr), 114.3 (Cq), 125.1 and 127.6 (4CHAr), 128.2 and 128.3 (2Cq), 128.7, 129.1 and 133.9 (3CHAr), 134.5, 138.3 and 176.9 (3Cq), 178.6 (COamide), 191.9 and 192.3 (2COketone); MS, m/z: 423 and 421 (M+).

3.3.6 2-Benzoyl-5′-bromo-6,6-dimethyl-6,7-dihydro-2H-spiro[benzofuran-3,3′-indoline]-2′,4(5H)-dione (4f)

White powder, mp: 274–276 °C; yield (0.36 g, 78%); IR (KBr) (νmax, cm−1): 3300 (NH), 2954 (Csp3H), 1728, 1696 and 1648 (3CO), 1220 (Csp2O), 1065 (Csp3O); 1H NMR (400 MHz, CDCl3), δH (ppm): 1.18 and 1.23 (2s, 6H, 2CH3), 2.18 and 2.30 (2d, 2H, 2JHH = 16.4 Hz, AB-system, CH2), 2.65 and 2.71 (2d, 2H, 2JHH = 18.0 Hz, AB-system, CH2), 6.32 (d, 1H, 3JHH = 8.4 Hz, CHOxindole), 6.46 (s, 1H, CHfuran), 6.98 (d, 1H, 4JHH = 2.0 Hz, CHAr), 7.10 (dd, 1H, 3JHH = 8.4 Hz, 4JHH = 2.0 Hz, CHAr), 7.28 (t, 2H, 3JHH = 8.4 Hz, 2CHAr), 7.43–7.47 (m, 3H, 3CHAr), 8.10 (br s, 1H, NH); 13C NMR (100 MHz, CDCl3), δC (ppm): 28.1 and 29.2 (2CH3), 34.6 (CMe2), 37.7 and 50.8 (2CH2), 58.8 (Cspiro), 91.2 (CHfuran), 111.2 (CHAr), 114.2 and 115.3 (2Cq), 127.6 and 127.8 (4CHAr), 128.6 (Cq), 128.7, 132.0 and 133.9 (3CHAr), 134.5, 138.9 and 176.8 (3Cq), 178.8 (COamide), 191.9 and 192.3 (2COketone); MS, m/z: 467 and 465 (M+).

3.3.7 Ethyl 2-(2-benzoyl-5′-chloro-6,6-dimethyl-2′,4-dioxo-4,5,6,7-tetrahydro-2H-spiro[benzofuran-3,3′-indoline]-1′-yl)acetate (4g)

White powder, mp: 158–160 °C; yield (0.38 g, 74%); IR (KBr) (νmax, cm−1): 3034 (Csp2H), 2925 (Csp3H), 1725 and 1645 (2CO), 1215 (Csp2O), 1069 (Csp2O); 1H NMR (400 MHz, CDCl3), δH (ppm): 1.18 and 1.21 (2s, 6H, 2CH3), 1.31 (t, 3H, 3JHH = 7.2 Hz, CH3), 2.20 and 2.24 (2d, 2H, 2JHH = 13.2 Hz, AB-system, CH2), 2.63 and 2.72 (2d, 2H, 2JHH = 18.0 Hz, AB-system, CH2), 4.22–4.27 (m, 2H, CH2), 4.31 and 4.46 (2d, 2H, 2JHH = 17.6 Hz, AB-system, NCH2), 6.37 (d, 1H, 3JHH = 8.4 Hz, CHOxindole), 6.44 (s, 1H, CHfuran), 6.86 (d, 1H, 4JHH = 2.0 Hz, CHAr), 7.01 (dd, 1H, 3JHH = 8.4 Hz, 4JHH = 2.4 Hz, CHAr), 7.28 (t, 2H, 3JHH = 8.4 Hz, 2CHAr), 7.48–7.52 (m, 3H, 3CHAr); 13C NMR (100 MHz, CDCl3), δC (ppm): 14.1, 28.3 and 28.9 (3CH3), 34.6 (CMe2), 37.8, 42.1 and 50.8 (3CH2), 58.1 (Cspiro), 61.9 (OCH2), 90.4 (CHfuran), 109.1 (CHAr), 114.0 (Cq), 125.2 and 127.8 (4CHAr), 128.3 (Cq), 128.8 and 129.0 (2CHAr), 133.5 (Cq), 133.9 (CHAr), 134.2 and 140.7 (2Cq), 166.9 (COester), 175.7 (Cq), 178.5 (COamide), 191.6 and 191.8 (2COketone); MS, m/z: 509 and 507 (M+).

3.3.8 2-Benzoyl-1′-benzyl-5′-chloro-6,6-dimethyl-6,7-dihydro-2H-spiro[benzofuran-3,3′-indoline]-2′,4(5H)-dione (4h)

White powder, mp: 203–205 °C; yield (0.42 g, 82%); IR (KBr) (νmax, cm−1): 3090 (Csp2H), 2959 (Csp3H), 1713 and 1644 (2CO), 1229 (Csp2O), 1074 (Csp2O); 1H NMR (400 MHz, CDCl3), δH (ppm): 1.18 and 1.24 (2s, 6H, 2CH3), 2.18 and 2.33 (2d, 2H, 2JHH = 16.4 Hz, AB-system, CH2), 2.67 and 2.71 (2d, 2H, 2JHH = 18.0 Hz, AB-system, CH2), 4.28 and 5.18 (2d, 2H, 2JHH = 16.0 Hz, AB-system, NCH2), 6.12 (d, 1H, 3JHH = 8.8 Hz, CHOxindole), 6.51 (s, 1H, CHfuran), 6.88–6.90 (m, 2H, 2CHAr), 7.20–7.24 (m, 2H, 2CHAr), 7.29–7.39 (m, 7H, 7CHAr), 7.44–7.48 (m, 1H, CHAr); 13C NMR (100 MHz, CDCl3), δC (ppm): 28.0 and 29.3 (2CH3), 34.5 (CMe2), 37.8, 44.5 and 50.8 (3CH2), 58.6 (Cspiro), 91.5 (CHfuran), 110.1 (CHAr), 114.3 (Cq), 124.9 and 126.9 (4CHAr), 127.5 and 127.7 (2CHAr), 127.8 and 128.4 (2Cq), 128.5 and 128.9 (4CHAr), 129.0 and 133.7 (2CHAr), 134.5, 134.7, 140.5 and 175.7 (4Cq), 178.3 (COamide), 192.0 and 192.1 (2COketone); MS, m/z: 513 and 511 (M+).

3.3.9 2-(4-Chlorobenzoyl)-6,6-dimethyl-6,7-dihydro-2H-spiro[benzofuran-3,3′-indoline]-2′,4(5H)-dione (4i)

White powder, mp: 248–249 °C; yield (0.34 g, 80%); IR (KBr) (νmax, cm−1): 3291 (NH), 2960 (Csp3H), 1735, 1690 and 1639 (3CO), 1224 (Csp2O), 1062 (Csp3O); 1H NMR (400 MHz, CDCl3), δH (ppm): 1.15 and 1.22 (2s, 6H, 2CH3), 2.15 and 2.33 (2d, 2H, 2JHH = 16.4 Hz, AB-system, CH2), 2.66 and 2.68 (2d, 2H, 2JHH = 14.4 Hz, AB-system, CH2), 6.42 (s, 1H, CHfuran), 6.49 (d, 1H, 3JHH = 8.0 Hz, CHOxindole), 6.83–6.86 (m, 2H, 2CHAr), 6.97–7.01 (m, 1H, CHAr), 7.22 (d, 2H, 3JHH = 8.8 Hz, 2CHAr), 7.36 (d, 2H, 3JHH = 8.8 Hz, 2CHAr), 8.70 (br s, 1H, NH); 13C NMR (100 MHz, CDCl3), δC (ppm): 27.7 and 29.4 (2CH3), 34.5 (CMe2), 37.7 and 50.8 (2CH2), 59.0 (Cspiro), 91.3 (CHfuran), 110.2 (CHAr), 114.6 (Cq), 122.8 and 124.6 (4CHAr), 126.4 (Cq), 128.8, 128.9 and 129.2 (3CHAr), 132.8, 140.0, 140.2 and 177.5 (4Cq), 178.3 (COamide), 191.1 and 192.4 (2COketone); MS, m/z: 423 and 421 (M+).

3.3.10 6-Benzoyl-1,3-dimethyl-1H-spiro[furo [2,3-d]pyrimidine-5,3′-indoline]-2,2′,4(3H,6H)-trione (4j)

White powder, mp: 245–247 °C; yield (0.28 g, 70%); IR (KBr) (νmax, cm−1): 3430 (NH), 2925 (Csp3H), 1709 and 1646 (2CO), 1190 (Csp2O), 1111 (Csp3O); 1H NMR (400 MHz, CDCl3), δH (ppm): 3.23 and 3.58 (2s, 6H, 2NCH3), 6.48 (d, 1H, 3JHH = 7.6 Hz, CHOxindole), 6.60 (s, 1H, CHfuran), 6.90 (td, 1H, 3JHH = 7.6 Hz, 4JHH = 0.8 Hz, CHAr), 6.94 (td, 1H, 3JHH = 8.0 Hz, 4JHH = 0.8 Hz, CHAr), 7.01 (td, 1H, 3JHH = 7.6 Hz, 4JHH = 1.6 Hz, CHAr), 7.25–7.29 (m, 2H, 2CHAr), 7.42–7.47 (m, 3H, 3CHAr), 7.97 (br s, 1H, NH); 13C NMR (100 MHz, CDCl3), δC (ppm): 27.9 and 30.1 (2CH3), 58.8 (Cspiro), 91.1 (CHfuran), 109.9 and 123.2 (2CHAr), 125.4 and 125.6 (2Cq), 127.5 and 128.7 (4CHAr), 129.6 and 134.1 (2CHAr), 139.7 (Cq), 148.0 (CHAr), 151.4 and 158.1 (2Cq), 163.2, 176.9 and 179.8 (3COamide), 190.6 (COketone); MS, m/z: 403 (M+).

3.3.11 2-(4-Bromobenzoyl)-6,6-dimethyl-6,7-dihydro-2H-spiro[benzofuran-3,3′-indoline]-2′,4(5H)-dione (4k)

White powder, mp: 235–237 °C; yield (0.35 g, 76%); IR (KBr) (νmax, cm−1): 3290 (NH), 2958 (Csp3H), 1723 and 1650 (2CO), 1475 (CC), 1224 (Csp2O), 1066 (Csp3O); 1H NMR (400 MHz, CDCl3), δH (ppm): 1.15 and 1.22 (2s, 6H, 2CH3), 2.14 and 2.32 (2d, 2H, 2JHH = 16.4 Hz, AB-system, CH2), 2.64 and 2.69 (2d, 2H, 2JHH = 18.4 Hz, AB-system, CH2), 6.41 (s, 1H, CHfuran), 6.53 (d, 1H, 3JHH = 8.0 Hz, CHOxindole), 6.85–6.91 (m, 2H, 2CHAr), 7.01–7.05 (m, 1H, CHAr), 7.28 (d, 2H, 3JHH = 8.8 Hz, 2CHAr), 7.40 (d, 2H, 3JHH = 8.8 Hz, 2CHAr), 7.85 (br s, 1H, NH); 13C NMR (100 MHz, CDCl3), δC (ppm): 27.7 and 29.4 (2CH3), 34.5 (CMe2), 37.7 and 50.8 (2CH2), 58.9 (Cspiro), 91.2 (CHfuran), 109.8 (CHAr), 113.0 (Cq), 123.0 and 124.8 (4CHAr), 126.4 (Cq), 128.9, 129.0 and 129.3 (3CHAr), 131.9, 133.3, 139.6 and 177.2 (4Cq), 178.0 (COamide), 191.3 and 192.1 (2COketone); MS, m/z: 467 and 465 (M+).

4 Conclusion

In conclusion, we have demonstrated an efficient, clean and step-wise economic procedure for the synthesis of novel spirooxindole–furan derivatives through a new variant of the interrupted Feist–Bénary reaction using N-phenacyl pyridinium salts as electrophiles. The corresponding products have been obtained in good yields under very convenient conditions.

Acknowledgements

This research was supported by the Research Council of the University of Mazandaran, Iran.


Bibliographie

[1] G. Bhaskar; Y. Arun; C. Balachandran; C. Saikumar; P.T. Perumal Eur. J. Med. Chem., 51 (2012), p. 79

[2] X. Jiang; Y. Sun; J. Yao; Y. Cao; M. Kai; N. He; X. Zhang; Y. Wang; R. Wang Adv. Synth. Catal., 354 (2012), p. 917

[3] C.V. Galliford; K.A. Scheidt Angew. Chem. Int. Ed., 46 (2007), p. 8748

[4] S.M. Kupchan; M.A. Eakin; A.M. Thomas J. Med. Chem., 111 (1971), p. 1147

[5] M. Hofnung; V.M. Quillardet; E. Touati Res. Microbiol., 153 (2002), p. 427

[6] M.W. Khan; M.J. Alam; M.A. Rashid; R. Chowdhury Bioorg. Med. Chem., 13 (2005), p. 4796

[7] J. Kobayashi; Y. Ohizumi; H. Nakamura Tetrahedron Lett., 27 (1986), p. 2113

[8] M.M. Bandurraga; W. Fenical; S.F. Donovan; J. Clardy J. Am. Chem. Soc., 104 (1982), p. 6463

[9] Y. Zhang; Y. Lu; W. Tang; T. Lu; D. Du Org. Biomol. Chem., 12 (2014), p. 3009

[10] B. Yu; D.Q. Yu; H.M. Liu Eur. J. Med. Chem., 97 (2015), p. 673

[11] M.M. Santos Tetrahedron, 70 (2014), p. 9735

[12] F. Feist Ber. Dtsch. Chem. Ges., 35 (1902), p. 1537

[13] E. Bénary Ber. Dtsch. Chem. Ges., 44 (1911), p. 489

[14] S. Ahadi; H.R. Khavasi; A. Bazgir Chem. Eur. J., 19 (2013), p. 12553

[15] M.A. Calter; A. Korotkov Org. Lett., 13 (2011), p. 6328

[16] R. Baharfar; N. Shariati C. R. Chim., 17 (2014), p. 413

[17] R. Baharfar; N. Shariati Turk. J. Chem., 39 (2015), p. 235

[18] R. Baharfar; R. Azimi J. Chem. Sci., 127 (2015), p. 1389

[19] R. Baharfar; S. Asghari; S. Rassi; M. Mohseni Res. Chem. Intermed., 41 (2015), p. 6975


Commentaires - Politique


Ces articles pourraient vous intéresser

An efficient one-pot synthesis of novel isatin-based 2-amino thiazol-4-one conjugates using MgO nanoparticles in aqueous media

Robabeh Baharfar; Narges Shariati

C. R. Chim (2014)


A simple and catalyst-free three-component method for the synthesis of spiro[indenopyrazolopyridine indoline]diones and spiro[indenopyridopyrimidine indoline]triones

Ghazaleh Imani Shakibaei; Afsaneh Feiz; Ayoob Bazgir

C. R. Chim (2011)


Stereoselective synthesis of 3,4-dihydro-7-nitrocoumarins via isocyanide-based multicomponent reaction

Ali Hossein Rezayan

C. R. Chim (2012)