Plan
Comptes Rendus

Adsorption of water in zeolite sodium-faujasite A molecular simulation study
Comptes Rendus. Chimie, Crystalline and organized porous solids, Volume 8 (2005) no. 3-4, pp. 485-490.

Résumés

We report a molecular simulation study of water adsorption in model NaY and NaX faujasite. Despite the rather simple model used for the water–adsorbent interaction, a fair agreement was found with the available experimental data. In the method used in this work the nonframework cations are allowed to move from place to place in the sample, and are not fixed anymore in their crystallographic sites, as in most of the previous adsorption simulations reported in the literature. We have indeed observed a cation redistribution upon water adsorption in a low cation content faujasite (Na48Y), but no such cation redistribution was observed in the higher cation content Na76X faujasite. The water adsorption process can thus be very different, depending on the Si/Al ratio of the aluminosilicate faujasite.

Nous avons effectué une étude par simulation moléculaire de l’adsorption d’eau dans deux zéolithes faujasites NaY et NaX. La méthode est fondée sur des modèles relativement simples, et notamment sur un potentiel d’interaction effectif entre les molécules d’eau et la charpente zéolithique qui a simplement été tiré de la littérature sur l’eau liquide, sans autre réajustement. L’accord entre les simulations et les expériences disponibles est toutefois suffisamment bon pour permettre une interprétation qualitative des phénomènes observés. Une amélioration des modèles est en cours, afin de mieux reproduire les faits expérimentaux. La partie la plus originale de la méthode utilisée réside dans la possibilité, pour les cations de compensation extracharpente de la zéolithe, de pouvoir se déplacer au cours de la simulation, par exemple sous l’effet de l’adsorption d’eau. La plupart des simulations moléculaires de la littérature considèrent ces cations comme fixés dans le site cristallographique déterminé expérimentalement pour la zéolithe anhydre. Il se trouve, en effet, que nous avons observé une redistribution spontanée des cations sodium dans le cas de Na48Y, au cours de l’adsorption d’eau. La distribution initiale (zéolithe vide) est telle qu’aucun cation ne se trouve dans les sites I′, dans les cages sodalites. L’eau s’adsorbe donc d’abord dans les supercages, en solvatant les cations en site II. Une fois que ces 32 cations par maille élémentaire sont solvatés par une première « couche » d’eau (environ 1,5 molécule par cation dans ce cas), nous observons un phénomène concerté de déplacement des cations en site I (site inaccessible stériquement pour l’eau) vers les sites I′, et de l’adsorption simultanée d’eau dans les cages sodalites. Ce phénomène d’adsorption en deux étapes est clairement mis en évidence par les simulations d’isotherme d’adsorption. Dans le cas de la faujasite Na76X, une telle redistribution n’est pas observée. En effet, la distribution initiale des cations dans la zéolithe anhydre est telle que 24 cations occupent déjà les sites I′. Seuls 16 cations suffiraient à solvater les 25 molécules d’eau que les cages sodalites peuvent accommoder à forte charge (l’expérience prévoit quatre molécules d’eau par cage sodalite, notre modèle plutôt trois). Nous concluons donc de cette étude que le processus d’adsorption d’eau dans les faujasites peut se dérouler de façon très différente selon la valeur précise du rapport Si/Al. Enfin, à saturation d’eau, nous n’avons pas observé de mouvement de grande amplitude des cations. Ceci est en contradiction apparente avec des interprétations d’expériences selon lesquelles les cations finiraient par se dissoudre entièrement dans l’eau liquide, à forte charge. La question reste pour l’instant ouverte de savoir dans quelle mesure ces désaccords sont imputables à la simplicité excessive des modèles utilisés dans cette étude.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crci.2004.11.011
Keywords: Zeolites, Adsorption, Water, Molecular Modeling, Statistical Thermodynamics
Mots-clés : Zéolithes, Adsorption, eau, Modélisation moléculaire, Thermodynamique statistique

Christèle Beauvais 1 ; Anne Boutin 1 ; Alain H. Fuchs 1

1 Laboratoire de chimie physique, UMR 8000, CNRS–université Paris-Sud, 91405 Orsay, France
@article{CRCHIM_2005__8_3-4_485_0,
     author = {Christ\`ele Beauvais and Anne Boutin and Alain H. Fuchs},
     title = {Adsorption of water in zeolite sodium-faujasite {A} molecular simulation study},
     journal = {Comptes Rendus. Chimie},
     pages = {485--490},
     publisher = {Elsevier},
     volume = {8},
     number = {3-4},
     year = {2005},
     doi = {10.1016/j.crci.2004.11.011},
     language = {en},
}
TY  - JOUR
AU  - Christèle Beauvais
AU  - Anne Boutin
AU  - Alain H. Fuchs
TI  - Adsorption of water in zeolite sodium-faujasite A molecular simulation study
JO  - Comptes Rendus. Chimie
PY  - 2005
SP  - 485
EP  - 490
VL  - 8
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crci.2004.11.011
LA  - en
ID  - CRCHIM_2005__8_3-4_485_0
ER  - 
%0 Journal Article
%A Christèle Beauvais
%A Anne Boutin
%A Alain H. Fuchs
%T Adsorption of water in zeolite sodium-faujasite A molecular simulation study
%J Comptes Rendus. Chimie
%D 2005
%P 485-490
%V 8
%N 3-4
%I Elsevier
%R 10.1016/j.crci.2004.11.011
%G en
%F CRCHIM_2005__8_3-4_485_0
Christèle Beauvais; Anne Boutin; Alain H. Fuchs. Adsorption of water in zeolite sodium-faujasite A molecular simulation study. Comptes Rendus. Chimie, Crystalline and organized porous solids, Volume 8 (2005) no. 3-4, pp. 485-490. doi : 10.1016/j.crci.2004.11.011. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2004.11.011/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

The interest in the properties of water confined in the nanometer-scale channels and pores of zeolites and other inorganic open framework materials dates back to the pioneer work of Barrer and Bratt [1]. From a practical point of view, water plays a key role in many applications such as ion-exchange and separation. It has been observed for some time that the (often unwanted) presence of pre-adsorbed water in the nano-porous solid affects the adsorption selectivity with respect to the hydrocarbon mixture that one wants to separate [2]. The mechanism producing these effects is poorly understood. Being able to understand and predict the effect of water on fluid (such as hydrocarbons) adsorption is considered as a key challenge in the adsorption community today [3]. From the fundamental point of view, water in zeolite represents a model system for a wide range of experimental as well as theoretical investigations, aimed at understanding the effect of confinement on the structure [4], dynamics [5,6] and thermodynamics [7,8] of molecular fluids.

Adsorption properties in zeolites are closely related to the location of nonframework cations and to their accessibility to adsorbed molecules. The partition of these cations among the different sites does not usually change during the course of the (non polar) hydrocarbon adsorption process. On the other hand, cation redistribution is suspected to occur upon adsorption of polar molecules. Mellot-Draznieks and Cheetham et al. [9] have carried out a neutron scattering study of CFCl3 adsorption in NaY and observed cation redistribution together with a new and previously unknown cation location. Recently, a change in the cation location upon water adsorption has also been predicted in zeolite sodium-mordenite by molecular dynamics simulation [10].

We report here a molecular simulation study of water adsorption in zeolite sodium-faujasite NaY and NaX. These two zeolites only differ by their Si/Al ratio, i.e. by the number of nonframework cations. We use a recently developed Monte Carlo simulation method that enables the nonframework cation distribution to change upon water adsorption [11]. Until now, most of the theoretical adsorption studies were using fixed cation distributions [12,13].

2 Models and methods

Faujasite is known to be a very stable zeolite, and hydration has very little impact on its overall structure, unlike some other open framework solids (clinoptilolite, aluminophosphates) [14,15]. We thus used a simple rigid framework system, as in our previous studies [11,16,17]. Molecular simulations were performed in the classical limit (no bond breaking take place, for instance). This justified by the fact that no hydrolysis is observed upon water adsorption [7], due to the weak bonding of water with the faujasite framework. We used the simple TIP4P effective potential model for water [18]. The polarization effects are not explicitly taken into account in this forcefield. The cation force field has been adapted from the work of Jaramillo and Auerbach [19] in the way described in Ref. [11]. The cation-framework potential consists of an exp-6 repulsion-dispersion term that acts between the cation and the oxygen atoms of the faujasite and a coulombic term that acts between the cation and both the oxygen and T atoms of the framework (the Al and Si atoms were not differentiated in this work). Sodium cations interact with each other through a single coulombic term. The water-framework interaction is calculated using Lennard–Jones type potential with faujasite oxygen atoms (σwater–O = 3.31 Å and ɛwater–O = 70.05 K) and sodium cations (σwater–Na = 2.87 Å and ɛwater–Na = 78.32 K). Ewald sums were used to calculate the long-range coulombic terms.

The cation distribution in faujasite is usually described as follows (see Fig. 1). Na+ can occupy sites I, located in the hexagonal prisms which connect the so-called sodalite cages. Sites I′ are inside the sodalite cages facing sites I. Sites II are in front of the six-rings inside the supercages. Sites III are also in the supercages, near the four-rings of the sodalite cages. Site I has a multiplicity of 16 per unit cell, sites I′ and II have a multiplicity of 32, and site III has a multiplicity of 48 per unit cell. Site III is believed to be of higher potential energy than sites I, I′, and II. At low occupancy (Si/Al > 2), cations are known to occupy sites I, I′, and II only [21].

Fig. 1

Schematic view of a faujasite supercage with the site I, I′, II, and III locations.

Adsorption simulations have been performed in two test cases. The first one is NaY faujasite (Si/Al = 3; 48 cations per unit cell, a unit cell being made of eight supercages), and the second one is NaX (Si/Al = 1.53; 76 cations per unit cell). As shown in Fig. 2, the cation distribution in a dry Na48Y sample corresponds to a full occupancy of site I (16 cations) and site II (32 cations), while all sites I′ and III are empty. The cation distribution in dry Na76X corresponds to a partial occupancy of site I (six cations), I′ (24), and III (14) and a full occupancy of site II (32).

Fig. 2

Sodium cation occupancy in dry faujasite, as a function of the cation number (CN) or silicon to aluminum ratio (Si/Al). Full lines: computed occupancies from replica-exchange Monte Carlo simulations [11]. Filled circles: experiments [20–25].

We performed Grand Canonical Monte Carlo (GCMC) simulations to compute the average number of adsorbed water molecules for several values of the chemical potential of the (fictitious) vapor reservoir at 298 K. To relate the chemical potential to the water vapor pressure we used tabulated fugacity data. During the course of the adsorption process, at each value of the water vapor pressure, canonical Monte Carlo moves were performed for the nonframework cations, enabling a spontaneous change in their partition among the available sites. In the case of Na48Y, which is known to display several metastable cation distributions [26], we complemented the computations with replica-exchange canonical simulations recently developed in our group in order to improve the sampling of the configuration space and thus the convergence of the Monte Carlo algorithm [11].

3 Results

The computed adsorption isotherm of water in Na48Y at 298 K is shown in Fig. 3 (blue curve). The starting cation distribution for the empty zeolite is the following: 16 cations in site I, none in site I′, 32 in site II and none in site III. This we call a (16,0,32,0) distribution. It corresponds to the dry Na48Y faujasite case described in the preceding section. Upon water adsorption, a spontaneous cation redistribution takes place. For low water content, we observed a solvation of the site II cations in the supercages. Above ~50 molecules per unit cell (i.e. roughly 1.5 water molecules per site II cation), a redistribution of site I and I′ cations takes place (Fig. 4). Sodium cations progressively move from site I to neighboring sites I′ in the sodalite cage. This is accompanied by a progressive occupancy of the sodalite cages by water molecules. The cation distribution observed at full loading, i.e. 208 water molecules per unit cell, is (4,12,32,0). Also shown in Fig. 3 are the two isotherms computed with fixed cation distributions (16,0,32,0) and (4,12,32,0), corresponding to the red and black curves respectively. It is clear from the Fig. 3 that cation redistribution upon water adsorption, whenever it occurs, can have a large effect on the computed thermodynamic quantities. More details on the Na48Y simulations can be found elsewhere [27].

Fig. 3

Computed adsorption isotherms of water in Na48Y faujasite. Red curve: fixed cations in the (16,0,32,0) distribution. Black curve: fixed cations in the (4,12,32,0) distribution. Blue curve: free cations.

Fig. 4

Computed sodium cation distributions in Na48Y for different water content.

The second part of the work deals with a faujasite model that contains a larger amount of cations, namely Na76X. In this case, the initial equilibrium cation distribution for the dry zeolite (6,24,32,14) is such that water can start adsorbing in the sodalite cages at very low pressure, because of the large amount of sodium cations in site I′. In contrast with the former Na48Y we found no I–I′ cation redistribution here. This is presumably due to the fact that a full occupancy of a sodalite cage corresponds to roughly three water molecules. Since each cation in site I′ solvates ~1.5 water molecules, there is no need to displace more cations from site I to site I′ to completely fill the sodalite cages. We have found essentially the same result for a Na56Y system. The initial (8,16,32,0) configuration displays the minimum number (16) of cations in site I′ necessary to solvate 24–25 water molecules per unit cell at full loading. Indeed, no cation redistribution took place in the Na56Y case either, thus confirming our hypothesis. It should be stressed that previous NMR [28] and calorimetric experiments [7] have found value of four molecules per sodalite cage, which is somewhat larger than the three molecules found here. However, our interpretation holds if we consider a solvation of each cation by two water molecules instead of 1.5 in the present simulations. This difference may well be due to the oversimplification of the water model used here.

Na76X is also of great interest to this work because thermodynamic data are available for this system, enabling us to test the validity of the model. In Fig. 5, we report the computed and experimental isosteric heat of adsorption. The agreement between simulation and experimental values is surprisingly good, given the simplicity of our model. The GCMC method enables to compute separately the water-framework and water–water contribution to the heat of adsorption. These are shown in Fig. 5. It is interesting to note an almost constant total heat of adsorption in the range 30–200 water molecules. This does not mean that the water molecules ‘feel’ a uniform external field during the course of adsorption, but it simply results from a simultaneous decrease of the water–zeolite and increase of the water–water contributions.

Fig. 5

Isosteric heat of adsorption as a function of the number of adsorbed water molecules for Na76X. Black line: computed total heat. Blue line: experiments [8]. Green line: computed water-framework contribution. Red line: computed water–water contribution.

The adsorption isotherm (not shown here), is also rather well reproduced in the low pressure regime, but the simulations underestimate the water content at full loading by some 17%. The maximum loading obtained by simulation is 215 water molecules per unit cell. Work is in progress to develop more sophisticated models for the water-framework interaction potential, by incorporating explicit polarization term, in order to reach a better agreement with experiments.

Boddenberg et al. [7], as well as Moïse et al. [8] have suggested that, at full loading, water forms a liquid with “dissolved cations”. We have found no evidence of this in our simulations. Only does, from time-to-time, one or another site III cation move from one site to another. Whether or not this discrepancy can be attributed to the oversimplification of the model used in this work remains an open question.

4 Conclusion

We have performed Monte Carlo simulations of water adsorption in model NaY and NaX faujasite, using a rather simple model (this is especially true for the effective TIP4P model used for water), and found a fair agreement with the available experimental data. In the method used in this work the nonframework cations are allowed to move from place to place in the sample, and are not fixed anymore in their crystallographic sites, as in most of the previous adsorption simulations reported in the literature. This is the most original part of the method used in this work. One of the interest of this method lies in the fact that it can, in principle, be extended to any type of adsorbent–adsorbate system.

We have indeed observed a cation redistribution upon water adsorption in a low cation content faujasite (Na48Y). Although these data were obtained using equilibrium Monte Carlo simulations (i.e. we have no direct information on the cation and water dynamics), it seems clear that we are faced with a concerted cation–water motion. To begin with, water molecules are preferentially adsorbed in sites II. By the time each site II cation is solvated by roughly 1.5 water molecules, it becomes energetically interesting for water molecules to solvate site I cations. As the hexagonal prism connecting two sodalite cages is too small to accommodate a water molecule, cations in site I will progressively move to sites I′, enabling water molecules to adsorb in sodalite cages.

No such cation redistribution was observed in the higher cation content Na76X faujasite. This we explain by the fact that the site I′ occupation is large enough in this case to enable a full water solvation in the sodalite cages (three molecules per cage in this work, four in the experiments). It turns out, from the above findings, that the water adsorption process can be very different, depending on the Si/Al ratio of the aluminosilicate faujasite.

Work is now in progress to develop more reliable models for the water-framework interaction, which is presumably the weakest part of the reported simulations.


Bibliographie

[1] R.M. Barrer; G.C. Bratt J. Phys. Chem. Solids, 12 (1959), p. 130 (146; 154)

[2] A. Malka-Edery; K. Abdallah; P. Grenier; F. Meunier Adsorption, 7 (2001), p. 17

[3] F. Meunier. in: K. Kaneko, H. Kanoh, Y. Hanzawa (Eds). Proc. 7th Conf. on Fundamentals of Adsorption, IK International, Ltd., Japan.

[4] T. Ohba; H. Kanoh; K. Kaneko J. Am. Chem. Soc., 126 (2004), p. 1560

[5] S. Devautour; A. Abdoulaye; J.-C. Giuntini; F. Henn J. Phys. Chem. B, 105 (2001), p. 9297

[6] P. Demontis; G.B. Suffritti Chem. Rev., 97 (1997), p. 2845

[7] B. Boddenberg; G.U. Rakhmatkariev; S. Hufnagel; Z. Salimov Phys. Chem. Chem. Phys., 4 (2002), p. 4172

[8] J.C. Moïse; J.P. Bellat; A. Méthivier Microporous Mesoporous Mater., 43 (2001), p. 91

[9] C. Mellot-Draznieks; J. Rodriguez-Carvajal; D.E. Cox; A.K. Cheetham Phys. Chem. Chem. Phys., 5 (2003), p. 1882

[10] G. Maurin; R.G. Bell; S. Devautour; F. Henn; J.-C. Giuntini J. Phys. Chem. B, 108 (2004), p. 3739

[11] C. Beauvais; X. Guerrault; F.-X. Coudert; A. Boutin; A.H. Fuchs J. Phys. Chem. B, 108 (2004), p. 399

[12] A.H. Fuchs; A.K. Cheetham J. Phys. Chem. B, 105 (2001), p. 7375

[13] B. Smit; R. Krishna Chem. Eng. Sci., 58 (2003), p. 557

[14] D.W. Lewis; A.R. Ruiz-Salvador; N. Almora-Barrios; A. Gómez; M. Mistry Mol. Simul., 28 (2002), p. 649

[15] G. Poulet; P. Sautet; A. Tuel J. Phys. Chem. B, 106 (2002), p. 8599

[16] V. Lachet; A. Boutin; B. Tavitian; A.H. Fuchs Langmuir, 15 (1999), p. 8678

[17] V. Lachet; S. Buttefey; A. Boutin; A.H. Fuchs Phys. Chem. Chem. Phys., 3 (2001), p. 80

[18] W.L. Jorgensen; J. Chandrasekhar; J.D. Madura; R.W. Impey; M.L. Klein J. Chem. Phys., 79 (1983), p. 926

[19] E. Jaramillo; S.M. Auerbach J. Phys. Chem. B, 103 (1999), p. 9589

[20] G. Vitale; C.F. Mellot; L.M. Bull; A.K. Cheetham J. Phys. Chem. B, 101 (1997), p. 4559

[21] G.R. Eulenberger; D.P. Shoemaker; J.G. Keil J. Phys. Chem., 71 (1967), p. 1812

[22] Z. Jirák; S. Vratislav; V. Bosácek J. Phys. Chem. Solids, 41 (1980), p. 1089

[23] D.H. Olson Zeolites, 15 (1995), p. 439

[24] L. Zhu; K. Seff J. Phys. Chem. B, 103 (1999), p. 9512

[25] F. Porcher; M. Souhassou; Y. Dusausoy; C. Lecomte Eur. J. Miner., 11 (1999), p. 333

[26] S. Buttefey; A. Boutin; C. Mellot-Draznieks; A.H. Fuchs J. Phys. Chem. B, 105 (2001), p. 9569

[27] C. Beauvais; A. Boutin; A.H. Fuchs Chem. Phys. Chem., 5 (2004), p. 1791

[28] A. Gedeon; T. Ito; J. Fraissard Zeolites, 8 (1988), p. 376


Cité par

  • Zheng Wang; Yichao Mao; Qinghe Yang; Xiaoyi Sang; Wei Wang; Chunlu Wang Insight into the competitive adsorption mechanism of ethylbenzene and octane on zeolite NaY with different SAR, Fuel, Volume 365 (2024), p. 131287 | DOI:10.1016/j.fuel.2024.131287
  • Robert L. White A Temperature Perturbation Infrared Spectroscopy Comparison of HY and NaY Zeolite Dehydration/Rehydration, Minerals, Volume 14 (2024) no. 1, p. 104 | DOI:10.3390/min14010104
  • Yannick Guari Advanced Porous Nanomaterials: Synthesis, Properties, and Applications, Nanomaterials, Volume 14 (2024) no. 19, p. 1602 | DOI:10.3390/nano14191602
  • Meryem Saidi; François Bihl; Olinda Gimello; Benoit Louis; Anne-Cécile Roger; Philippe Trens; Fabrice Salles Evaluation of the Hydrophilic/Hydrophobic Balance of 13X Zeolite by Adsorption of Water, Methanol, and Cyclohexane as Pure Vapors or as Mixtures, Nanomaterials, Volume 14 (2024) no. 2, p. 213 | DOI:10.3390/nano14020213
  • Letizia Aghemo; Luca Lavagna; Eliodoro Chiavazzo; Matteo Pavese Comparison of key performance indicators of sorbent materials for thermal energy storage with an economic focus, Energy Storage Materials, Volume 55 (2023), p. 130 | DOI:10.1016/j.ensm.2022.11.042
  • Botagoz Zhakisheva; Juan José Gutiérrez-Sevillano; Sofía Calero Ammonia and water in zeolites: Effect of aluminum distribution on the heat of adsorption, Separation and Purification Technology, Volume 306 (2023), p. 122564 | DOI:10.1016/j.seppur.2022.122564
  • Richard C. Shiery; David C. Cantu Cation-Induced Disruption of the Local Structure of Water in Faujasite, The Journal of Physical Chemistry C, Volume 127 (2023) no. 8, p. 4218 | DOI:10.1021/acs.jpcc.2c06545
  • Annika Starke; Christoph Pasel; Christian Bläker; Tobias Eckardt; Jens Zimmermann; Dieter Bathen Investigation of the Adsorption of Hydrogen Sulfide on Faujasite Zeolites Focusing on the Influence of Cations, ACS Omega, Volume 7 (2022) no. 48, p. 43665 | DOI:10.1021/acsomega.2c04606
  • Donglong Fu; Mark E. Davis Carbon dioxide capture with zeotype materials, Chemical Society Reviews, Volume 51 (2022) no. 22, p. 9340 | DOI:10.1039/d2cs00508e
  • Jihane Moudar; Nisrine El Fami; Abdeljebbar Diouri; Mhammed Taibi Identification and characterization of faujasite zeolite phase in alkali activated class F fly ash, Materials Today: Proceedings, Volume 58 (2022), p. 1447 | DOI:10.1016/j.matpr.2022.02.475
  • El Hassane Lahrar; Irena Deroche; Camélia Matei Ghimbeu; Patrice Simon; Céline Merlet Simulations of Ionic Liquids Confined in Surface-Functionalized Nanoporous Carbons: Implications for Energy Storage, ACS Applied Nano Materials, Volume 4 (2021) no. 4, p. 4007 | DOI:10.1021/acsanm.1c00342
  • Philipp Brandt; Alexander Nuhnen; Seçil Öztürk; Gülin Kurt; Jun Liang; Christoph Janiak Comparative Evaluation of Different MOF and Non‐MOF Porous Materials for SO2 Adsorption and Separation Showing the Importance of Small Pore Diameters for Low‐Pressure Uptake, Advanced Sustainable Systems, Volume 5 (2021) no. 4 | DOI:10.1002/adsu.202000285
  • Vladimir Z. Mordkovich; Lilia V. Sineva Water-Zeolite Interfaces for Controlling Reaction Routes in Fischer- Tropsch Synthesis of Alternative Fuels, Current Catalysis, Volume 9 (2020) no. 1, p. 3 | DOI:10.2174/2211544709999200420072505
  • Marta Gómez García; José M. García Fernández; Christoph Buttersack Adsorption of difructose dianhydrides on hydrophobic Y-zeolites, Microporous and Mesoporous Materials, Volume 292 (2020), p. 109673 | DOI:10.1016/j.micromeso.2019.109673
  • Yaoguo Fu; Yingshu Liu; Ziyi Li; Quanli Zhang; Xiong Yang; Chunyu Zhao; Chuanzhao Zhang; Haoyu Wang; Ralph T. Yang Insights into adsorption separation of N2/O2 mixture on FAU zeolites under plateau special conditions: A molecular simulation study, Separation and Purification Technology, Volume 251 (2020), p. 117405 | DOI:10.1016/j.seppur.2020.117405
  • Jaspreet Singh; Robert L. White A variable temperature infrared spectroscopy study of NaY zeolite dehydration, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Volume 231 (2020), p. 118142 | DOI:10.1016/j.saa.2020.118142
  • B.J. Rajesha; V. Halali Vishaka; Geetha R. Balakrishna; Mahesh Padaki; N.A.M. Nazri Effective composite membranes of cellulose acetate for removal of benzophenone-3, Journal of Water Process Engineering, Volume 30 (2019), p. 100419 | DOI:10.1016/j.jwpe.2017.06.003
  • Mark J. Purdue; Zhiwei Qiao Molecular simulation study of wet flue gas adsorption on zeolite 13X, Microporous and Mesoporous Materials, Volume 261 (2018), p. 181 | DOI:10.1016/j.micromeso.2017.10.059
  • Woohyeon Baek; Suhyeon Ha; Sumin Hong; Seonah Kim; Yeongkyoo Kim Cation exchange of cesium and cation selectivity of natural zeolites: Chabazite, stilbite, and heulandite, Microporous and Mesoporous Materials, Volume 264 (2018), p. 159 | DOI:10.1016/j.micromeso.2018.01.025
  • Y. Khabzina; C. Laroche; J. Pérez-Pellitero; D. Farrusseng Quantitative structure–property relationship approach to predicting xylene separation with diverse exchanged faujasites, Physical Chemistry Chemical Physics, Volume 20 (2018) no. 36, p. 23773 | DOI:10.1039/c8cp04042g
  • M. Haghighi Asl; F. Moosavi; J. Sargolzaei; Kh. Sharifi Molecular dynamics simulation study: The decryption of bi and tri aromatics behavior with NaX zeolite, Journal of Molecular Graphics and Modelling, Volume 69 (2016), p. 61 | DOI:10.1016/j.jmgm.2016.08.002
  • Paula Gómez-Álvarez; Julio Perez-Carbajo; Salvador R. G. Balestra; Sofia Calero Impact of the Nature of Exchangeable Cations on LTA-Type Zeolite Hydration, The Journal of Physical Chemistry C, Volume 120 (2016) no. 40, p. 23254 | DOI:10.1021/acs.jpcc.6b06916
  • A. E. O. LIMA; V. A. M. GOMES; S. M. P. de LUCENA, Anais do XX Congresso Brasileiro de Engenharia Química (2015), p. 14529 | DOI:10.5151/chemeng-cobeq2014-0117-26957-157052
  • M. Ben Abda; O. Schäf; Y. Zerega Ion exchange effect on asymmetric dioxins adsorption onto FAU-type X-zeolites, Microporous and Mesoporous Materials, Volume 217 (2015), p. 178 | DOI:10.1016/j.micromeso.2015.06.013
  • Marta S. P. Silva; José P. B. Mota; Alírio E. Rodrigues Adsorption Equilibrium and Kinetics of the Parex' Feed and Desorbent Streams from Batch Experiments, Chemical Engineering Technology, Volume 37 (2014) no. 9, p. 1541 | DOI:10.1002/ceat.201300721
  • Marc Pera-Titus Porous Inorganic Membranes for CO2 Capture: Present and Prospects, Chemical Reviews, Volume 114 (2014) no. 2, p. 1413 | DOI:10.1021/cr400237k
  • M. Pera-Titus; M. Palomino; S. Valencia; F. Rey Thermodynamic analysis of framework deformation in Na,Cs-RHO zeolite upon CO2adsorption, Phys. Chem. Chem. Phys., Volume 16 (2014) no. 44, p. 24391 | DOI:10.1039/c4cp03409k
  • Jean-Pierre Bellat Study of Selective Adsorption of Gases by Calorimetry, Calorimetry and Thermal Methods in Catalysis, Volume 154 (2013), p. 273 | DOI:10.1007/978-3-642-11954-5_7
  • Y. Hattori; K. Kaneko; T. Ohba Adsorption Properties, Comprehensive Inorganic Chemistry II (2013), p. 25 | DOI:10.1016/b978-0-08-097774-4.00502-7
  • Lennart Joos; Joseph A. Swisher; Berend Smit Molecular Simulation Study of the Competitive Adsorption of H2O and CO2 in Zeolite 13X, Langmuir, Volume 29 (2013) no. 51, p. 15936 | DOI:10.1021/la403824g
  • L. Narasimhan; B. Kuchta; O. Schaef; P. Brunet; P. Boulet Mechanism of adsorption of p-cresol uremic toxin into faujasite zeolites in presence of water and sodium cations – A Monte Carlo study, Microporous and Mesoporous Materials, Volume 173 (2013), p. 70 | DOI:10.1016/j.micromeso.2013.02.003
  • A. Khosravi; A. Golchoobi; H. Modarress; A. Ahmadzadeh The effects of partial charges and water models on water adsorption in nanostructured zeolites, application of PN-TrAz potential in parallel GCMC, Molecular Simulation, Volume 39 (2013) no. 6, p. 495 | DOI:10.1080/08927022.2012.747683
  • Juan Manuel Castillo; Juaquin Silvestre-Albero; Francisco Rodriguez-Reinoso; Thijs J. H. Vlugt; Sofia Calero Water adsorption in hydrophilic zeolites: experiment and simulation, Physical Chemistry Chemical Physics, Volume 15 (2013) no. 40, p. 17374 | DOI:10.1039/c3cp52910j
  • M. S. P. Silva; M. A. Moreira; A. F. P. Ferreira; J. C. Santos; V. M. T. M. Silva; P. Sá Gomes; M. Minceva; J. P. B. Mota; A. E. Rodrigues Adsorbent Evaluation Based on Experimental Breakthrough Curves: Separation of p‐Xylene from C8 Isomers, Chemical Engineering Technology, Volume 35 (2012) no. 10, p. 1777 | DOI:10.1002/ceat.201100672
  • Hazar Guesmi; Pascale Massiani; Habiba Nouali; Jean-Louis Paillaud A combined experimental and theoretical study of the simultaneous occupation of SIa and SI′ sites in fully dehydrated K–LSX, Microporous and Mesoporous Materials, Volume 159 (2012), p. 87 | DOI:10.1016/j.micromeso.2012.04.011
  • M. Nakamura; T. Ohba; P. Branton; H. Kanoh; K. Kaneko Equilibration-time and pore-width dependent hysteresis of water adsorption isotherm on hydrophobic microporous carbons, Carbon, Volume 48 (2010) no. 1, p. 305 | DOI:10.1016/j.carbon.2009.09.008
  • Alexandra Navrotsky; Olga Trofymluk; Andrey A. Levchenko Thermochemistry of Microporous and Mesoporous Materials, Chemical Reviews, Volume 109 (2009) no. 9, p. 3885 | DOI:10.1021/cr800495t
  • A. Özgür Yazaydın; Robert W. Thompson Molecular simulation of water adsorption in silicalite: Effect of silanol groups and different cations, Microporous and Mesoporous Materials, Volume 123 (2009) no. 1-3, p. 169 | DOI:10.1016/j.micromeso.2009.03.045
  • Wulf Depmeier Some Examples of Temperature and Time Resolved Studies of the Dehydration and Hydration Behavior of Zeolites and Clathrates, Particle Particle Systems Characterization, Volume 26 (2009) no. 3, p. 138 | DOI:10.1002/ppsc.200800012
  • Jean-Pierre Bellat; Christian Paulin; Marie Jeffroy; Anne Boutin; Jean-Louis Paillaud; Joel Patarin; Angela Di Lella; Alain Fuchs Unusual Hysteresis Loop in the Adsorption−Desorption of Water in NaY Zeolite at Very Low Pressure, The Journal of Physical Chemistry C, Volume 113 (2009) no. 19, p. 8287 | DOI:10.1021/jp810209t
  • C. Abrioux; B. Coasne; G. Maurin; F. Henn; A. Boutin; A. Di Lella; C. Nieto-Draghi; A. H. Fuchs A molecular simulation study of the distribution of cation in zeolites, Adsorption, Volume 14 (2008) no. 4-5, p. 743 | DOI:10.1007/s10450-008-9123-z
  • A. Nicolas; S. Devautour-Vinot; G. Maurin; J.C. Giuntini; F. Henn Location and de-trapping energy of sodium ions in dehydrated X and Y faujasites determined by dielectric relaxation spectroscopy, Microporous and Mesoporous Materials, Volume 109 (2008) no. 1-3, p. 413 | DOI:10.1016/j.micromeso.2007.05.039
  • T. Frising; P. Leflaive Extraframework cation distributions in X and Y faujasite zeolites: A review, Microporous and Mesoporous Materials, Volume 114 (2008) no. 1-3, p. 27 | DOI:10.1016/j.micromeso.2007.12.024
  • Laurent Gueudré; Anne Agathe Quoineaud; Gerhard Pirngruber; Philibert Leflaive Evidence of Multiple Cation Site Occupation in Zeolite NaY with High Si/Al Ratio, The Journal of Physical Chemistry C, Volume 112 (2008) no. 29, p. 10899 | DOI:10.1021/jp803037u
  • James P. Larentzos; William F. Schneider; Edward J. Maginn Transferable Force Field for Water Adsorption in Cation-Exchanged Titanosilicates, Industrial Engineering Chemistry Research, Volume 46 (2007) no. 17, p. 5754 | DOI:10.1021/ie070276g
  • May Nyman; James P. Larentzos; Edward J. Maginn; Margaret E. Welk; David Ingersoll; Hyunsoo Park; John B. Parise; Ivor Bull; François Bonhomme Experimental and Theoretical Methods to Investigate Extraframework Species in a Layered Material of Dodecaniobate Anions, Inorganic Chemistry, Volume 46 (2007) no. 6, p. 2067 | DOI:10.1021/ic061454l
  • A. Han; Y. Qiao Infiltration pressure of a nanoporous liquid spring modified by an electrolyte, Journal of Materials Research, Volume 22 (2007) no. 3, p. 644 | DOI:10.1557/jmr.2007.0088
  • Daniel Bougeard; Konstantin S. Smirnov Modelling studies of water in crystalline nanoporous aluminosilicates, Phys. Chem. Chem. Phys., Volume 9 (2007) no. 2, p. 226 | DOI:10.1039/b614463m
  • François‐Xavier Coudert; Rodolphe Vuilleumier; Anne Boutin Dipole Moment, Hydrogen Bonding and IR Spectrum of Confined Water, ChemPhysChem, Volume 7 (2006) no. 12, p. 2464 | DOI:10.1002/cphc.200600561
  • Nicolas Desbiens; Anne Boutin; Isabelle Demachy Water Condensation in Hydrophobic Silicalite-1 Zeolite:  A Molecular Simulation Study, The Journal of Physical Chemistry B, Volume 109 (2005) no. 50, p. 24071 | DOI:10.1021/jp054168o

Cité par 50 documents. Sources : Crossref


Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: