Comptes Rendus
Ordinary Differential Equations
Linearization of germs of hyperbolic vector fields
Comptes Rendus. Mathématique, Volume 336 (2003) no. 1, pp. 19-22.

We develop a normal form to express asymptotically a conjugacy between a germ of resonant vector field and its linear part. We show that such an asymptotic expression can be written in terms of functions of the Logarithmic Mourtada type.

Nous développons une forme normale pour exprimer asymptotiquement une conjugaison entre un germe de champ de vecteur résonant et sa partie linéaire. Nous montrons qu'une telle conjugaison peut s'ecrire sous en terme de fonctions de fonctions dites LMT.

Published online:
DOI: 10.1016/S1631-073X(02)00007-9

Patrick Bonckaert 1; Vincent Naudot 2; Jiazhong Yang 3

1 Limburgs Universitair Centrum, 3590 Diepenbeek, Belgium
2 University of Groningen, Department of Mathematics, P.O. Box 800m, 9700 AV Groningen, The Netherlands
3 School of Mathematical Sciences, Peking University, Beijing 100871, PR China
     author = {Patrick Bonckaert and Vincent Naudot and Jiazhong Yang},
     title = {Linearization of germs of hyperbolic vector fields},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {19--22},
     publisher = {Elsevier},
     volume = {336},
     number = {1},
     year = {2003},
     doi = {10.1016/S1631-073X(02)00007-9},
     language = {en},
AU  - Patrick Bonckaert
AU  - Vincent Naudot
AU  - Jiazhong Yang
TI  - Linearization of germs of hyperbolic vector fields
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 19
EP  - 22
VL  - 336
IS  - 1
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)00007-9
LA  - en
ID  - CRMATH_2003__336_1_19_0
ER  - 
%0 Journal Article
%A Patrick Bonckaert
%A Vincent Naudot
%A Jiazhong Yang
%T Linearization of germs of hyperbolic vector fields
%J Comptes Rendus. Mathématique
%D 2003
%P 19-22
%V 336
%N 1
%I Elsevier
%R 10.1016/S1631-073X(02)00007-9
%G en
%F CRMATH_2003__336_1_19_0
Patrick Bonckaert; Vincent Naudot; Jiazhong Yang. Linearization of germs of hyperbolic vector fields. Comptes Rendus. Mathématique, Volume 336 (2003) no. 1, pp. 19-22. doi : 10.1016/S1631-073X(02)00007-9.

[1] G. Belitskii Equivalence and normal forms of germs of smooth mappings, Russian Math. Surveys, Volume 33 (1978) no. 1, pp. 107-177

[2] P. Bonckaert On the continuous dependence of the smooth change of coordinates in parametrized normal forms, J. Differential Equations, Volume 106 (1993), pp. 107-120

[3] P. Bonckaert; V. Naudot Asymptotic properties of the Dulac map near a hyperbolic saddle in dimension 3, Ann. Fac. Sci. Toulouse Math. (6), Volume 10 (2001) no. 4, pp. 595-617

[4] I.U. Bronstein; A.Ya. Kopanskii Smooth Invariant Manifolds and Normal Forms, World Scientific, Singapore, 1994

[5] K.T. Chen Equivalence and decomposition of vector fields about an elementary critical point, Amer. J. Math., Volume 85 (1963), pp. 693-722

[6] J. Ecalle Compensation of small denominators and ramified linearisation of local objects. Complex analytic methods in dynamical systems, Asterisque, Volume 222 (1994) no. 4, pp. 135-199

[7] P. Hartman On local homeomorphisms of Euclidean spaces, Bol. Soc. Mat. Mexicana, Volume 5 (1960), pp. 220-241

[8] M. Hirsch; C. Pugh; M. Shub Invariant Manifolds, Lecture Notes in Math., 583, Springer-Verlag, 1977

[9] A. Mourtada Cyclicité finie des polycycles hyperboliques de champs de vecteurs du plan. Algorithme de finitude, Ann. Inst. Fourier (Grenoble), Volume 41 (1991), pp. 719-853

[10] R. Roussarie Smoothness properties for bifurcation diagrams, Publ. Mat., Volume 41 (1997), pp. 243-268

[11] V.S. Samovol Linearization of systems of ordinary differential equations in a neighbourhood of invariant toroidal manifolds, Proc. Moscow Math. Soc., Volume 38 (1979), pp. 187-219

[12] S. Sternberg On the structure of local homomorphisms of euclidean n-space, I, Amer. J. Math., Volume 80 (1958), pp. 623-631

[13] S. Sternberg On the structure of local homomorphisms of euclidean n-space, II, Amer. J. Math., Volume 81 (1959), pp. 578-605

Cited by Sources:

Comments - Policy