Nous étudions l'estimateur à noyau de la régression quand la variable explicative prend ses valeurs dans un espace semi-métrique. Nous établissons sa consistance en moyenne d'ordre p et presque sûre et nous donnons des bornes supérieures de ces erreurs d'estimation sous des conditions générales. Nous appliquons ces résultats à la discrimination de variables d'un espace semi-métrique et les illustrons par l'exemple du processus de Wiener comme variable explicative.
We study a nonparametric regression estimator when the explanatory variable takes its values in a semi-metric space. We establish some asymptotic results and give upper bounds of the p-mean and the almost sure estimation errors under general conditions. We end by an application to the discrimination in a semi-metric space and illustrate the results by the example of Wiener process as an explanatory variable.
Accepté le :
Publié le :
Sophie Dabo-Niang 1 ; Noureddine Rhomari 2
@article{CRMATH_2003__336_1_75_0, author = {Sophie Dabo-Niang and Noureddine Rhomari}, title = {Estimation non param\'etrique de la r\'egression avec variable explicative dans un espace m\'etrique}, journal = {Comptes Rendus. Math\'ematique}, pages = {75--80}, publisher = {Elsevier}, volume = {336}, number = {1}, year = {2003}, doi = {10.1016/S1631-073X(02)00012-2}, language = {fr}, }
TY - JOUR AU - Sophie Dabo-Niang AU - Noureddine Rhomari TI - Estimation non paramétrique de la régression avec variable explicative dans un espace métrique JO - Comptes Rendus. Mathématique PY - 2003 SP - 75 EP - 80 VL - 336 IS - 1 PB - Elsevier DO - 10.1016/S1631-073X(02)00012-2 LA - fr ID - CRMATH_2003__336_1_75_0 ER -
Sophie Dabo-Niang; Noureddine Rhomari. Estimation non paramétrique de la régression avec variable explicative dans un espace métrique. Comptes Rendus. Mathématique, Volume 336 (2003) no. 1, pp. 75-80. doi : 10.1016/S1631-073X(02)00012-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)00012-2/
[1] Linear Processes in Function Spaces: Theory and Applications, Lecture Notes in Statist., 149, Springer, 2000
[2] A relation between Chung's and Strassen laws of the iterated logarithm, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, Volume 19 (1980), pp. 287-301
[3] Estimation de la densité dans un espace de dimension infinie : Application aux diffusions, C. R. Acad. Sci. Paris Sér. I Math., Volume 334 (2002), pp. 213-216
[4] S. Dabo-Niang, N. Rhomari, Nonparametric regression estimation when the regressor takes values in a metric space, Technical Report 2002-9, LSTA Univ. Paris 6, 2001, http://www.ccr.jussieu.fr/lsta/R2002_9.pdf
[5] S. Dabo-Niang, N. Rhomari, Kernel regression estimation in a Banach space, Preprint, 2001
[6] On the absolute everywhere convergence of nonparametric regression function estimates, Ann. Statist., Volume 9 (1981), pp. 1310-1319
[7] F. Ferraty, Estimation nonparamétrique et discrimination de courbes, Actes SFC 2001, 17–21 Décembre 2001, pp. 128–132
[8] F. Ferraty, A. Goia, P. Vieu, Functional nonparametric model for time series: a fractal approach for dimension reduction, Test, 2002, à paraı̂tre
[9] Dimension fractal et estimation de la régression dans des espaces vectoriels semi-normés, C. R. Acad. Sci. Paris Sér. I Math., Volume 330 (2000), pp. 139-142
[10] The rates of onvergence of kernel regression estimates and clasification rules, IEEE Trans. Inform. Theory, Volume IT-32 (1986), pp. 668-679
[11] Rates of onvergence of nearest neighbor estimation under arbitrary sampling, IEEE Trans. Inform. Theory, Volume 41 (1995), pp. 1028-1039
[12] Functional Data Analysis, Springer, New York, 1997
[13] N. Rhomari, Kernel regression estimation in Banach space under dependence, Preprint, 2001
[14] Differentiation theorem for Gaussian measures on Hilbert spaces, Trans. Amer. Math. Soc., Volume 308 (1988), pp. 655-666
- Non parametric estimations of the conditional density and mode when the regressor and the response are curves, Communications in Statistics. Theory and Methods, Volume 52 (2023) no. 13, pp. 4659-4674 | DOI:10.1080/03610926.2021.1998831 | Zbl:7710559
- Nonparametric quantile regression estimation for functional dependent data, Communications in Statistics. Theory and Methods, Volume 41 (2012) no. 7-9, pp. 1254-1268 | DOI:10.1080/03610926.2010.542850 | Zbl:1319.62086
- Functional semiparametric partially linear model with autoregressive errors, Journal of Multivariate Analysis, Volume 101 (2010) no. 2, pp. 307-315 | DOI:10.1016/j.jmva.2008.06.008 | Zbl:1178.62033
- Rate of uniform consistency for nonparametric estimates with functional variables, Journal of Statistical Planning and Inference, Volume 140 (2010) no. 2, pp. 335-352 | DOI:10.1016/j.jspi.2009.07.019 | Zbl:1177.62044
- Note on conditional mode estimation for functional dependent data, Statistica, Volume 70 (2010) no. 1, pp. 83-94 | DOI:10.6092/issn.1973-2201/3570 | Zbl:1453.62441
- Kernel regression estimation in a Banach space, Journal of Statistical Planning and Inference, Volume 139 (2009) no. 4, pp. 1421-1434 | DOI:10.1016/j.jspi.2008.06.015 | Zbl:1153.62028
- Nonparametric Regression on Functional Variable and Structural Tests, Functional and Operatorial Statistics (2008), p. 143 | DOI:10.1007/978-3-7908-2062-1_23
- Nonparametric estimation of the conditional mode when the regressor is functional, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 344 (2007) no. 1, pp. 49-52 | DOI:10.1016/j.crma.2006.11.022 | Zbl:1104.62040
- Kernel regression estimation for continuous spatial processes, Mathematical Methods of Statistics, Volume 16 (2007) no. 4, pp. 298-317 | DOI:10.3103/s1066530707040023 | Zbl:1140.62071
- Nonparametric Functional Methods: New Tools for Chemometric Analysis, Statistical Methods for Biostatistics and Related Fields (2007), p. 245 | DOI:10.1007/978-3-540-32691-5_13
- Nearest neighbor classification in infinite dimension, European Series in Applied and Industrial Mathematics (ESAIM): Probability and Statistics, Volume 10 (2006), pp. 340-355 | DOI:10.1051/ps:2006014 | Zbl:1187.62115
- Non-parametric regression estimation on closed Riemannian manifolds, Journal of Nonparametric Statistics, Volume 18 (2006) no. 1, p. 57 | DOI:10.1080/10485250500504828
- Kernel density estimator in an infinite-dimensional space with a rate of convergence in the case of diffusion process., Applied Mathematics Letters, Volume 17 (2004) no. 4, pp. 381-386 | DOI:10.1016/s0893-9659(04)90078-x | Zbl:1083.62031
- Density estimation by orthogonal series in an infinite dimensional space: Application to processes of diffusion type I, Journal of Nonparametric Statistics, Volume 16 (2004) no. 1-2, p. 171 | DOI:10.1080/10485250310001624837
- Kernel regression estimation when the regressor takes values in metric space, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 336 (2003) no. 1, pp. 75-80 | DOI:10.1016/s1631-073x(02)00012-2 | Zbl:1020.62034
Cité par 15 documents. Sources : Crossref, zbMATH
Commentaires - Politique