Comptes Rendus
Statistique/Probalilités
Estimation non paramétrique de la régression avec variable explicative dans un espace métrique
Comptes Rendus. Mathématique, Volume 336 (2003) no. 1, pp. 75-80.

Nous étudions l'estimateur à noyau de la régression quand la variable explicative prend ses valeurs dans un espace semi-métrique. Nous établissons sa consistance en moyenne d'ordre p et presque sûre et nous donnons des bornes supérieures de ces erreurs d'estimation sous des conditions générales. Nous appliquons ces résultats à la discrimination de variables d'un espace semi-métrique et les illustrons par l'exemple du processus de Wiener comme variable explicative.

We study a nonparametric regression estimator when the explanatory variable takes its values in a semi-metric space. We establish some asymptotic results and give upper bounds of the p-mean and the almost sure estimation errors under general conditions. We end by an application to the discrimination in a semi-metric space and illustrate the results by the example of Wiener process as an explanatory variable.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)00012-2

Sophie Dabo-Niang 1 ; Noureddine Rhomari 2

1 Laboratoire de statistique, CREST-INSEE, 3, avenue Pierre Larousse, 92245 Malakoff cedex, France
2 Université Mohamed I, Faculté des sciences, 60 000 Oujda, Maroc
@article{CRMATH_2003__336_1_75_0,
     author = {Sophie Dabo-Niang and Noureddine Rhomari},
     title = {Estimation non param\'etrique de la r\'egression avec variable explicative dans un espace m\'etrique},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {75--80},
     publisher = {Elsevier},
     volume = {336},
     number = {1},
     year = {2003},
     doi = {10.1016/S1631-073X(02)00012-2},
     language = {fr},
}
TY  - JOUR
AU  - Sophie Dabo-Niang
AU  - Noureddine Rhomari
TI  - Estimation non paramétrique de la régression avec variable explicative dans un espace métrique
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 75
EP  - 80
VL  - 336
IS  - 1
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)00012-2
LA  - fr
ID  - CRMATH_2003__336_1_75_0
ER  - 
%0 Journal Article
%A Sophie Dabo-Niang
%A Noureddine Rhomari
%T Estimation non paramétrique de la régression avec variable explicative dans un espace métrique
%J Comptes Rendus. Mathématique
%D 2003
%P 75-80
%V 336
%N 1
%I Elsevier
%R 10.1016/S1631-073X(02)00012-2
%G fr
%F CRMATH_2003__336_1_75_0
Sophie Dabo-Niang; Noureddine Rhomari. Estimation non paramétrique de la régression avec variable explicative dans un espace métrique. Comptes Rendus. Mathématique, Volume 336 (2003) no. 1, pp. 75-80. doi : 10.1016/S1631-073X(02)00012-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)00012-2/

[1] D. Bosq Linear Processes in Function Spaces: Theory and Applications, Lecture Notes in Statist., 149, Springer, 2000

[2] E. Csaki A relation between Chung's and Strassen laws of the iterated logarithm, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, Volume 19 (1980), pp. 287-301

[3] S. Dabo-Niang Estimation de la densité dans un espace de dimension infinie : Application aux diffusions, C. R. Acad. Sci. Paris Sér. I Math., Volume 334 (2002), pp. 213-216

[4] S. Dabo-Niang, N. Rhomari, Nonparametric regression estimation when the regressor takes values in a metric space, Technical Report 2002-9, LSTA Univ. Paris 6, 2001, http://www.ccr.jussieu.fr/lsta/R2002_9.pdf

[5] S. Dabo-Niang, N. Rhomari, Kernel regression estimation in a Banach space, Preprint, 2001

[6] L. Devroye On the absolute everywhere convergence of nonparametric regression function estimates, Ann. Statist., Volume 9 (1981), pp. 1310-1319

[7] F. Ferraty, Estimation nonparamétrique et discrimination de courbes, Actes SFC 2001, 17–21 Décembre 2001, pp. 128–132

[8] F. Ferraty, A. Goia, P. Vieu, Functional nonparametric model for time series: a fractal approach for dimension reduction, Test, 2002, à paraı̂tre

[9] F. Ferraty; P. Vieu Dimension fractal et estimation de la régression dans des espaces vectoriels semi-normés, C. R. Acad. Sci. Paris Sér. I Math., Volume 330 (2000), pp. 139-142

[10] A. Krzyżak The rates of onvergence of kernel regression estimates and clasification rules, IEEE Trans. Inform. Theory, Volume IT-32 (1986), pp. 668-679

[11] S.R. Kulkarni; S.E. Posner Rates of onvergence of nearest neighbor estimation under arbitrary sampling, IEEE Trans. Inform. Theory, Volume 41 (1995), pp. 1028-1039

[12] J.O. Ramsay; B.W. Silverman Functional Data Analysis, Springer, New York, 1997

[13] N. Rhomari, Kernel regression estimation in Banach space under dependence, Preprint, 2001

[14] J. Tišer Differentiation theorem for Gaussian measures on Hilbert spaces, Trans. Amer. Math. Soc., Volume 308 (1988), pp. 655-666

  • Ali Laksaci; Zoulikha Kaid; Mohamed Alahiane; Idir Ouassou; Mustapha Rachdi Non parametric estimations of the conditional density and mode when the regressor and the response are curves, Communications in Statistics. Theory and Methods, Volume 52 (2023) no. 13, pp. 4659-4674 | DOI:10.1080/03610926.2021.1998831 | Zbl:7710559
  • Sophie Dabo-Niang; Ali Laksaci Nonparametric quantile regression estimation for functional dependent data, Communications in Statistics. Theory and Methods, Volume 41 (2012) no. 7-9, pp. 1254-1268 | DOI:10.1080/03610926.2010.542850 | Zbl:1319.62086
  • Sophie Dabo-Niang; Serge Guillas Functional semiparametric partially linear model with autoregressive errors, Journal of Multivariate Analysis, Volume 101 (2010) no. 2, pp. 307-315 | DOI:10.1016/j.jmva.2008.06.008 | Zbl:1178.62033
  • Frédéric Ferraty; Ali Laksaci; Amel Tadj; Philippe Vieu Rate of uniform consistency for nonparametric estimates with functional variables, Journal of Statistical Planning and Inference, Volume 140 (2010) no. 2, pp. 335-352 | DOI:10.1016/j.jspi.2009.07.019 | Zbl:1177.62044
  • Sophie Dabo-Niang; Ali Laksaci Note on conditional mode estimation for functional dependent data, Statistica, Volume 70 (2010) no. 1, pp. 83-94 | DOI:10.6092/issn.1973-2201/3570 | Zbl:1453.62441
  • Sophie Dabo-Niang; Noureddine Rhomari Kernel regression estimation in a Banach space, Journal of Statistical Planning and Inference, Volume 139 (2009) no. 4, pp. 1421-1434 | DOI:10.1016/j.jspi.2008.06.015 | Zbl:1153.62028
  • Laurent Delsol Nonparametric Regression on Functional Variable and Structural Tests, Functional and Operatorial Statistics (2008), p. 143 | DOI:10.1007/978-3-7908-2062-1_23
  • Sophie Dabo-Niang; Ali Laksaci Nonparametric estimation of the conditional mode when the regressor is functional, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 344 (2007) no. 1, pp. 49-52 | DOI:10.1016/j.crma.2006.11.022 | Zbl:1104.62040
  • S. Dabo-Niang; A.-F. Yao Kernel regression estimation for continuous spatial processes, Mathematical Methods of Statistics, Volume 16 (2007) no. 4, pp. 298-317 | DOI:10.3103/s1066530707040023 | Zbl:1140.62071
  • Frédéric Ferraty; Aldo Goia; Philippe Vieu Nonparametric Functional Methods: New Tools for Chemometric Analysis, Statistical Methods for Biostatistics and Related Fields (2007), p. 245 | DOI:10.1007/978-3-540-32691-5_13
  • Frédéric Cérou; Arnaud Guyader Nearest neighbor classification in infinite dimension, European Series in Applied and Industrial Mathematics (ESAIM): Probability and Statistics, Volume 10 (2006), pp. 340-355 | DOI:10.1051/ps:2006014 | Zbl:1187.62115
  • Bruno Pelletier Non-parametric regression estimation on closed Riemannian manifolds, Journal of Nonparametric Statistics, Volume 18 (2006) no. 1, p. 57 | DOI:10.1080/10485250500504828
  • S. Dabo-Niang Kernel density estimator in an infinite-dimensional space with a rate of convergence in the case of diffusion process., Applied Mathematics Letters, Volume 17 (2004) no. 4, pp. 381-386 | DOI:10.1016/s0893-9659(04)90078-x | Zbl:1083.62031
  • Sophie Dabo-Niang Density estimation by orthogonal series in an infinite dimensional space: Application to processes of diffusion type I, Journal of Nonparametric Statistics, Volume 16 (2004) no. 1-2, p. 171 | DOI:10.1080/10485250310001624837
  • Sophie Dabo-Niang; Noureddine Rhomari Kernel regression estimation when the regressor takes values in metric space, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 336 (2003) no. 1, pp. 75-80 | DOI:10.1016/s1631-073x(02)00012-2 | Zbl:1020.62034

Cité par 15 documents. Sources : Crossref, zbMATH

Commentaires - Politique