A sub-Markov semigroup in L∞ is in general not strongly continuous with respect to the norm topology. We introduce a new topology on L∞ for which the usual sub-Markov semigroups in the literature become C0-semigroups. This is realized by a natural extension of the Phillips theorem about dual semigroup. A simplified Hille–Yosida theorem is furnished. Moreover this new topological approach will allow us to introduce the notion of L∞-uniqueness of pre-generator. We present several important pre-generators for which we can prove their L∞-uniqueness.
Un semigroupe sous-Markovien sur L∞ n'est pas, en général, fortement continu par rapport à la topologie de norme. Nons allons introduire une nouvelle topologie sur L∞ par rapport à laquelle les semigroupes sous-Markoviens dans la litterature deviennent C0-semigroupes. Ce sera réalisé par une extension naturelle du théorème de Phillips pour semigroupe dual. Un théorème de Hille–Yosida simplifié est fourni. Cette nouvelle topologie nous permet d'introduire la notion d'unicité dans L∞ d'un prégénérateur. Nous présentons plusieurs important opérateurs dont l'unicité dans L∞ est établie.
Accepted:
Published online:
Liming Wu 1, 2; Yiping Zhang 2
@article{CRMATH_2002__334_8_699_0, author = {Liming Wu and Yiping Zhang}, title = {Existence and uniqueness of {\protect\emph{C}\protect\textsubscript{0}-semigroup} in {L\protect\textsuperscript{\ensuremath{\infty}}:} a new topological approach}, journal = {Comptes Rendus. Math\'ematique}, pages = {699--704}, publisher = {Elsevier}, volume = {334}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02245-8}, language = {en}, }
Liming Wu; Yiping Zhang. Existence and uniqueness of C0-semigroup in L∞: a new topological approach. Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 699-704. doi : 10.1016/S1631-073X(02)02245-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02245-8/
[1] The abstract Cauchy problem, special semigroups and perturbation (R. Nagel, ed.), One Parameter Semigroups of Positive Operators, Lecture Notes in Math., 1184, Springer, Berlin, 1986
[2] A Hille–Yosida theorem for weakly continuous semigroups, Semigroup Forum, Volume 49 (1994), pp. 349-367
[3] H. Djellout, Unicité dans Lp d'opérateurs de Nelson, Preprint, 1997
[4] Markov Processes, Vol. I, II, Grundlehren der mathematischen Wissenschaften 121 and 122, Springer-Verlag, 1965
[5] A. Eberle, Uniqueness and non-uniqueness of singular diffusion operators. Ph.D dissertation, Bielefeld, 1997
[6] Markov Processes: Characterization and Convergence, Wiley, 1986
[7] The parabolic differential equations and the associated semigroups of transformations, Ann. Math., Volume 55 (1952) no. 3, pp. 468-519
[8] Semi-groups of transformations in general weak topologies, Ann. Math., Volume 57 (1953), pp. 287-308
[9] Weakly integrable semigroups on locally convex spaces, J. Funct. Anal., Volume 66 (1986), pp. 347-364
[10] The generation of weakly integrable semigroups, J. Funct. Anal., Volume 66 (1987), pp. 347-364
[11] Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., 44, Springer-Verlag, 1983
[12] Uniqueness of Schödinger operateurs restricted to a domain, J. Funct. Anal., Volume 153 (1998), pp. 276-319
[13] Uniqueness of Nelson's diffusions, Probab. Theory Related Fields, Volume 114 (1999), pp. 549-585
[14] Functional Analysis, Third Version, Grundlehren der mathematischen Wissenschaften, 123, Springer-Verlag, 1971
Cited by Sources:
Comments - Policy