Comptes Rendus
Existence and uniqueness of C0-semigroup in L: a new topological approach
Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 699-704.

A sub-Markov semigroup in L is in general not strongly continuous with respect to the norm topology. We introduce a new topology on L for which the usual sub-Markov semigroups in the literature become C0-semigroups. This is realized by a natural extension of the Phillips theorem about dual semigroup. A simplified Hille–Yosida theorem is furnished. Moreover this new topological approach will allow us to introduce the notion of L-uniqueness of pre-generator. We present several important pre-generators for which we can prove their L-uniqueness.

Un semigroupe sous-Markovien sur L n'est pas, en général, fortement continu par rapport à la topologie de norme. Nons allons introduire une nouvelle topologie sur L par rapport à laquelle les semigroupes sous-Markoviens dans la litterature deviennent C0-semigroupes. Ce sera réalisé par une extension naturelle du théorème de Phillips pour semigroupe dual. Un théorème de Hille–Yosida simplifié est fourni. Cette nouvelle topologie nous permet d'introduire la notion d'unicité dans L d'un prégénérateur. Nous présentons plusieurs important opérateurs dont l'unicité dans L est établie.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(02)02245-8

Liming Wu 1, 2; Yiping Zhang 2

1 Department of Mathematics, Wuhan University, 430072 Hubei, China
2 Laboratoire de mathématiques appliquées, Université Blaise Pascal, 63177 Aubière, France
@article{CRMATH_2002__334_8_699_0,
     author = {Liming Wu and Yiping Zhang},
     title = {Existence and uniqueness of {\protect\emph{C}\protect\textsubscript{0}-semigroup} in {L\protect\textsuperscript{\ensuremath{\infty}}:} a new topological approach},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {699--704},
     publisher = {Elsevier},
     volume = {334},
     number = {8},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02245-8},
     language = {en},
}
TY  - JOUR
AU  - Liming Wu
AU  - Yiping Zhang
TI  - Existence and uniqueness of C0-semigroup in L∞: a new topological approach
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 699
EP  - 704
VL  - 334
IS  - 8
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02245-8
LA  - en
ID  - CRMATH_2002__334_8_699_0
ER  - 
%0 Journal Article
%A Liming Wu
%A Yiping Zhang
%T Existence and uniqueness of C0-semigroup in L∞: a new topological approach
%J Comptes Rendus. Mathématique
%D 2002
%P 699-704
%V 334
%N 8
%I Elsevier
%R 10.1016/S1631-073X(02)02245-8
%G en
%F CRMATH_2002__334_8_699_0
Liming Wu; Yiping Zhang. Existence and uniqueness of C0-semigroup in L: a new topological approach. Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 699-704. doi : 10.1016/S1631-073X(02)02245-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02245-8/

[1] W. Arendt The abstract Cauchy problem, special semigroups and perturbation (R. Nagel, ed.), One Parameter Semigroups of Positive Operators, Lecture Notes in Math., 1184, Springer, Berlin, 1986

[2] S. Cerrai A Hille–Yosida theorem for weakly continuous semigroups, Semigroup Forum, Volume 49 (1994), pp. 349-367

[3] H. Djellout, Unicité dans Lp d'opérateurs de Nelson, Preprint, 1997

[4] E.B. Dynkin Markov Processes, Vol. I, II, Grundlehren der mathematischen Wissenschaften 121 and 122, Springer-Verlag, 1965

[5] A. Eberle, Uniqueness and non-uniqueness of singular diffusion operators. Ph.D dissertation, Bielefeld, 1997

[6] S.N. Ethier; T.S. Kurtz Markov Processes: Characterization and Convergence, Wiley, 1986

[7] W. Feller The parabolic differential equations and the associated semigroups of transformations, Ann. Math., Volume 55 (1952) no. 3, pp. 468-519

[8] W. Feller Semi-groups of transformations in general weak topologies, Ann. Math., Volume 57 (1953), pp. 287-308

[9] B. Jefferies Weakly integrable semigroups on locally convex spaces, J. Funct. Anal., Volume 66 (1986), pp. 347-364

[10] B. Jefferies The generation of weakly integrable semigroups, J. Funct. Anal., Volume 66 (1987), pp. 347-364

[11] A. Pazy Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., 44, Springer-Verlag, 1983

[12] L.M. Wu Uniqueness of Schödinger operateurs restricted to a domain, J. Funct. Anal., Volume 153 (1998), pp. 276-319

[13] L.M. Wu Uniqueness of Nelson's diffusions, Probab. Theory Related Fields, Volume 114 (1999), pp. 549-585

[14] K. Yosida Functional Analysis, Third Version, Grundlehren der mathematischen Wissenschaften, 123, Springer-Verlag, 1971

Cited by Sources:

Comments - Policy