Dans cette Note, nous proposons une méthode d'éléments finis avec hybridisation frontière pour les problèmes de contact avec frottement. Dans le problème de point-selle discret, les cônes convexes associés aux contraintes normale et tangentielle sont constitués de fonctions continues et affines par morceaux vérifiant des conditions affaiblies de négativité sur la zone de contact. Une estimation a priori optimale est établie dans ce cas. Des essais numériques confirmant les résultats théoriques sont présentés.
In this Note, we propose a finite element method with Lagrange multipliers in order to approximate contact problems with friction. The discretized normal and tangential constraints at the candidate contact interface are expressed by using continuous piecewise linear Lagrange multipliers in the saddle-point formulation. An optimal error estimate is established and several numerical studies corresponding to this choice of the discretized normal and tangential constraints are achieved.
Révisé le :
Publié le :
Laurent Baillet 1 ; Taoufik Sassi 2
@article{CRMATH_2002__334_10_917_0, author = {Laurent Baillet and Taoufik Sassi}, title = {M\'ethode d'\'el\'ements finis avec hybridisation fronti\`ere pour les probl\`emes de contact avec frottement}, journal = {Comptes Rendus. Math\'ematique}, pages = {917--922}, publisher = {Elsevier}, volume = {334}, number = {10}, year = {2002}, doi = {10.1016/S1631-073X(02)02356-7}, language = {fr}, }
TY - JOUR AU - Laurent Baillet AU - Taoufik Sassi TI - Méthode d'éléments finis avec hybridisation frontière pour les problèmes de contact avec frottement JO - Comptes Rendus. Mathématique PY - 2002 SP - 917 EP - 922 VL - 334 IS - 10 PB - Elsevier DO - 10.1016/S1631-073X(02)02356-7 LA - fr ID - CRMATH_2002__334_10_917_0 ER -
%0 Journal Article %A Laurent Baillet %A Taoufik Sassi %T Méthode d'éléments finis avec hybridisation frontière pour les problèmes de contact avec frottement %J Comptes Rendus. Mathématique %D 2002 %P 917-922 %V 334 %N 10 %I Elsevier %R 10.1016/S1631-073X(02)02356-7 %G fr %F CRMATH_2002__334_10_917_0
Laurent Baillet; Taoufik Sassi. Méthode d'éléments finis avec hybridisation frontière pour les problèmes de contact avec frottement. Comptes Rendus. Mathématique, Volume 334 (2002) no. 10, pp. 917-922. doi : 10.1016/S1631-073X(02)02356-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02356-7/
[1] Une méthode d'élélements finis hybrides en décomposition de domaines, Model. Math. Anal. Numer., Volume 29 (1995) no. 6, pp. 749-764
[2] L. Baillet, T. Sassi, Mixed finite element methods for Signorini's problem with friction, en préparation
[3] Noncorforming finite element methods for contact problem with friction, 3rd Contact Mecanics International Symposium, CMIS 2001, Peniche, Portugal, June 17–21, 2001
[4] Eléments finis avec joints pour des problèmes de contact avec frottement de Coulomb nonlocal, C. R. Acad. Sci. Paris, Série I, Volume 325 (1997), pp. 1323-1328
[5] The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978
[6] Mixed finite element method for unilateral problem: Convergence analysis and numerical studies, Math. Comp., Volume 71 (2002) no. 237, pp. 1-25
[7] Les inéquations en mécanique et en physique, Dunod, Paris, 1972
[8] Approximation of Signorini problem with friction by a mixed finite element method, J. Math. Anal. Appl., Volume 86 (1982), pp. 99-122
[9] Numerical methods for unilateral problems in solid mecanics (P.G. Ciarlet; J.-L. Lions, eds.), Handbook of Numerical Analysis, Vol. IV, Part 2, North-Holland, 1996
[10] Éléments finis non conformes pour un problème de contact unilatéral avec frottement, C. R. Acad. Sci. Paris, Série I (1997), pp. 707-710
- A dual-modified implicit time integration method for three-dimensional impact modelling within the framework of the SBFEM, Computers and Geotechnics, Volume 175 (2024), p. 106692 | DOI:10.1016/j.compgeo.2024.106692
- Tresca Friction, Finite Element Approximation of Contact and Friction in Elasticity, Volume 48 (2023), p. 183 | DOI:10.1007/978-3-031-31423-0_8
- Computational modeling of 2D frictional contact problems based on the use of coupling finite elements and combined contact/friction damage constitutive model, Finite Elements in Analysis and Design, Volume 199 (2022), p. 103658 | DOI:10.1016/j.finel.2021.103658
- Contact analysis within the bi-potential framework using cell-based smoothed finite element method, International Journal of Computational Methods, Volume 19 (2022) no. 6, p. 24 (Id/No 2141004) | DOI:10.1142/s0219876221410048 | Zbl:1550.74355
- Contact analysis of functionally graded materials using smoothed finite element methods, International Journal of Computational Methods, Volume 17 (2020) no. 5, p. 35 (Id/No 1940012) | DOI:10.1142/s0219876219400127 | Zbl:1535.74575
- A node-to-node scheme for three-dimensional contact problems using the scaled boundary finite element method, Computer Methods in Applied Mechanics and Engineering, Volume 347 (2019), pp. 928-956 | DOI:10.1016/j.cma.2019.01.015 | Zbl:1440.74251
- A scaled boundary finite element based node-to-node scheme for 2D frictional contact problems, Computer Methods in Applied Mechanics and Engineering, Volume 333 (2018), pp. 114-146 | DOI:10.1016/j.cma.2018.01.012 | Zbl:1440.74241
- A cell-based smoothed finite element method for multi-body contact analysis using linear complementarity formulation, International Journal of Solids and Structures, Volume 141-142 (2018), p. 110 | DOI:10.1016/j.ijsolstr.2018.02.016
- Validation of a new frictional law for simulating friction-induced vibrations of rough surfaces, Tribology International, Volume 121 (2018), p. 468 | DOI:10.1016/j.triboint.2018.01.052
- Parametrical experimental and numerical analysis on friction-induced vibrations by a simple frictional system, Tribology International, Volume 112 (2017), p. 47 | DOI:10.1016/j.triboint.2017.03.032
- Experimental and numerical analysis of frictional contact scenarios: from macro stick–slip to continuous sliding, Meccanica, Volume 50 (2015) no. 3, p. 649 | DOI:10.1007/s11012-014-0010-2
- System dynamic instabilities induced by sliding contact: A numerical analysis with experimental validation, Mechanical Systems and Signal Processing, Volume 58-59 (2015), p. 70 | DOI:10.1016/j.ymssp.2015.01.006
- An adaptation of Nitsche's method to the Tresca friction problem, Journal of Mathematical Analysis and Applications, Volume 411 (2014) no. 1, pp. 329-339 | DOI:10.1016/j.jmaa.2013.09.019 | Zbl:1311.74112
- Towards large time simulation reduction for the solving of mechanical contact (large scale) problems: A robust control approach, IFAC Proceedings Volumes, Volume 46 (2013) no. 20, p. 417 | DOI:10.3182/20130902-3-cn-3020.00183
- Wave and rupture propagation at frictional bimaterial sliding interfaces: From local to global dynamics, from stick-slip to continuous sliding, Tribology International, Volume 52 (2012), p. 117 | DOI:10.1016/j.triboint.2012.03.008
- References, Mathematical and Computational Methods in Biomechanics of Human Skeletal Systems (2011), p. 535 | DOI:10.1002/9781118006474.refs
- Analysis of type I endoleaks in a stented abdominal aortic aneurysm, Medical Engineering Physics, Volume 31 (2009) no. 1, p. 27 | DOI:10.1016/j.medengphy.2008.03.005
- Sharp curved track corrugation: From corrugation observed on-site, to corrugation reproduced on simulators, Tribology International, Volume 42 (2009) no. 11-12, p. 1691 | DOI:10.1016/j.triboint.2009.04.042
- Homogenization in non-linear dynamics due to frictional contact, International Journal of Solids and Structures, Volume 45 (2008) no. 9, pp. 2451-2469 | DOI:10.1016/j.ijsolstr.2007.12.005 | Zbl:1169.74531
- Mixed finite element analysis of semi-coercive unilateral contact problems with given friction., Applications of Mathematics, Volume 52 (2007) no. 1, pp. 25-58 | DOI:10.1007/s10492-007-0002-9 | Zbl:1164.49304
- , SAE Technical Paper Series, Volume 1 (2007) | DOI:10.4271/2007-01-3963
- Dynamic Finite Element Simulations for Understanding Wheel-Rail Contact Oscillatory States Occurring Under Sliding Conditions, Journal of Tribology, Volume 128 (2006) no. 4, p. 761 | DOI:10.1115/1.2345402
- Basics and some applications of the mortar element method, GAMM-Mitteilungen, Volume 28 (2005) no. 2, pp. 97-123 | DOI:10.1002/gamm.201490020 | Zbl:1177.65178
- Finite Element Analysis of a Contact With Friction Between an Elastic Body and a Thin Soft Layer, Journal of Tribology, Volume 127 (2005) no. 3, p. 461 | DOI:10.1115/1.1866170
- Finite Element Simulation of Dynamic Instabilities in Frictional Sliding Contact, Journal of Tribology, Volume 127 (2005) no. 3, p. 652 | DOI:10.1115/1.1866160
- Mixed finite element formulation in large deformation frictional contact problem, Revue Européenne des Éléments Finis, Volume 14 (2005) no. 2-3, p. 287 | DOI:10.3166/reef.14.287-304
- Influence of sliding contact local dynamics on macroscopic friction coefficient variation, Revue Européenne des Éléments Finis, Volume 14 (2005) no. 2-3, p. 305 | DOI:10.3166/reef.14.305-321
- Presence and role of the third body in a wheel–rail contact, Wear, Volume 258 (2005) no. 7-8, p. 1081 | DOI:10.1016/j.wear.2004.03.068
- Third‐Body Reality – Consequences and Use of the Third‐Body Concept to Solve Friction and Wear Problems, Wear – Materials, Mechanisms and Practice (2005), p. 291 | DOI:10.1002/9780470017029.ch12
- Mixed formulations for a class of variational inequalities., M2AN. Mathematical Modelling and Numerical Analysis. ESAIM, European Series in Applied and Industrial Mathematics, Volume 38 (2004) no. 1, pp. 177-201 | DOI:10.1051/m2an:2004009 | Zbl:1100.65059
- Mixed finite element approximation of 3D contact problems with given friction: error analysis and numerical realization., M2AN. Mathematical Modelling and Numerical Analysis. ESAIM, European Series in Applied and Industrial Mathematics, Volume 38 (2004) no. 3, pp. 563-578 | DOI:10.1051/m2an:2004026 | Zbl:1080.74046
- The role and effects of the third body in the wheel–rail interaction, Fatigue Fracture of Engineering Materials Structures, Volume 27 (2004) no. 5, p. 423 | DOI:10.1111/j.1460-2695.2004.00764.x
- Dry friction: influence of local dynamic aspect on contact pressure, kinematics and friction, Transient Processes in Tribology, Proceedings of the 30th Leeds-Lyon Symposium on Tribology, Volume 43 (2003), p. 545 | DOI:10.1016/s0167-8922(03)80082-2
- Modeling the consequences of local kinematics of the first body on friction and on third body sources in wear, Wear, Volume 255 (2003) no. 1-6, p. 299 | DOI:10.1016/s0043-1648(03)00207-2
Cité par 34 documents. Sources : Crossref, zbMATH
Commentaires - Politique