On étudie l'équation de Schrödinger iy′+Δy+qy=0 sur
We study the Schrödinger equation iy′+Δy+qy=0 on
Publié le :
Lucie Baudouin 1 ; Jean-Pierre Puel 1
@article{CRMATH_2002__334_11_967_0, author = {Lucie Baudouin and Jean-Pierre Puel}, title = {D\'etermination du potentiel dans l'\'equation de {Schr\"odinger} \`a partir de mesures sur une partie du bord}, journal = {Comptes Rendus. Math\'ematique}, pages = {967--972}, publisher = {Elsevier}, volume = {334}, number = {11}, year = {2002}, doi = {10.1016/S1631-073X(02)02391-9}, language = {fr}, }
TY - JOUR AU - Lucie Baudouin AU - Jean-Pierre Puel TI - Détermination du potentiel dans l'équation de Schrödinger à partir de mesures sur une partie du bord JO - Comptes Rendus. Mathématique PY - 2002 SP - 967 EP - 972 VL - 334 IS - 11 PB - Elsevier DO - 10.1016/S1631-073X(02)02391-9 LA - fr ID - CRMATH_2002__334_11_967_0 ER -
%0 Journal Article %A Lucie Baudouin %A Jean-Pierre Puel %T Détermination du potentiel dans l'équation de Schrödinger à partir de mesures sur une partie du bord %J Comptes Rendus. Mathématique %D 2002 %P 967-972 %V 334 %N 11 %I Elsevier %R 10.1016/S1631-073X(02)02391-9 %G fr %F CRMATH_2002__334_11_967_0
Lucie Baudouin; Jean-Pierre Puel. Détermination du potentiel dans l'équation de Schrödinger à partir de mesures sur une partie du bord. Comptes Rendus. Mathématique, Volume 334 (2002) no. 11, pp. 967-972. doi : 10.1016/S1631-073X(02)02391-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02391-9/
[1] L. Baudouin, J.-P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation, to appear
[2] Introduction to the Theory of Inverse Problems, Inverse and Ill-Posed Problem Series, VSP, Utrecht, 2000
[3] A.L. Bukhgeim, G. Uhlmann, Recovering a potential from partial Cauchy data, to appear
[4] Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 1 et 5, Springer, Berlin, 2000
[5] Global uniqueness and stability in determining coefficients of wave equations, Comm. Partial Differential Equations, Volume 26 (2001) no. 7–8, pp. 1409-1425
[6] Global Lipschitz stability in an inverse hyperbolic problem by interior observations, Inverse Problems, Volume 17 (2001) no. 4, pp. 717-728
[7] Exact controllability for the Schrödinger equation, SIAM J. Control Optimization, Volume 32 (1994) no. 1, pp. 24-34
[8] Smoothing property in multidimentional inverse hyperbolic problems: application to uniqueness and stability, J. Inverse and Ill-Posed Problems, Volume 4 (1996), pp. 283-296
[9] Carleman estimates and exact boundary controllability for a system of coupled non-conservative Schrödinger equations, Rend. Istit. Mat. Univ. Trieste, Volume XXVIII (1997), pp. 453-504 (Supplement, dedicated to the memory of Pierre Grisvard)
[10] Uniqueness and stability in multidimensional hyperbolic inverse problems, J. Math. Pures Appl., Volume 78 (1999), pp. 65-98
- The unique continuation property for second order evolution PDEs, SN Partial Differential Equations and Applications, Volume 2 (2021) no. 5, p. 46 (Id/No 67) | DOI:10.1007/s42985-021-00123-6 | Zbl:1480.35080
Cité par 1 document. Sources : zbMATH
Commentaires - Politique