[Systèmes holonomes avec solutions ramifiées le long d'un cusp]
On classifie les systèmes holonomes d'équations (micro) differentielles de multiplicité un dont le support est un espace analytique complexe Lagrangien, singulier, irréductible et contenu dans une sous-varieté lisse de codimension maximal. On montre que leur solutions sont en rapport avec des fonctions kFk−1 hypergeométriques sur la sphère de Riemann.
We classify the holonomic systems of (micro) differential equations of multiplicity one along a singular Lagrangian irreducible variety contained in an involutive submanifold of maximal codimension. We show that their solutions are related to kFk−1 hypergeometric functions on the Riemann sphere.
Publié le :
Orlando Neto 1 ; Pedro C. Silva 1
@article{CRMATH_2002__335_2_171_0, author = {Orlando Neto and Pedro C. Silva}, title = {Holonomic systems with solutions ramified along a~cusp}, journal = {Comptes Rendus. Math\'ematique}, pages = {171--176}, publisher = {Elsevier}, volume = {335}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02436-6}, language = {en}, }
Orlando Neto; Pedro C. Silva. Holonomic systems with solutions ramified along a cusp. Comptes Rendus. Mathématique, Volume 335 (2002) no. 2, pp. 171-176. doi : 10.1016/S1631-073X(02)02436-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02436-6/
[1] The monodromy of the hypergeometric function nFn−1, Invent. Math., Volume 95 (1989), pp. 325-354
[2] Analytic -modules and Applications, Kluwer Academic, 1993
[3] On holonomic systems of microdifferential equations III, Publ. Res. Inst. Math. Sci., Volume 17 (1981), pp. 813-979
[4] Hypergeometric functions, Indag. Math., Volume 23 (1961), pp. 361-403
[5] A microlocal Riemann–Hilbert correspondence, Comp. Math., Volume 127 (2001), pp. 229-241
[6] Microdifferential Systems in the Complex Domain, Springer-Verlag, 1985
[7] Micro-local analysis of prehomogeneous vector spaces, Invent. Math., Volume 62 (1980), pp. 117-178
Cité par Sources :
Commentaires - Politique