Comptes Rendus
Holonomic systems with solutions ramified along a cusp
[Systèmes holonomes avec solutions ramifiées le long d'un cusp]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 2, pp. 171-176.

On classifie les systèmes holonomes d'équations (micro) differentielles de multiplicité un dont le support est un espace analytique complexe Lagrangien, singulier, irréductible et contenu dans une sous-varieté lisse de codimension maximal. On montre que leur solutions sont en rapport avec des fonctions kFk−1 hypergeométriques sur la sphère de Riemann.

We classify the holonomic systems of (micro) differential equations of multiplicity one along a singular Lagrangian irreducible variety contained in an involutive submanifold of maximal codimension. We show that their solutions are related to kFk−1 hypergeometric functions on the Riemann sphere.

Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02436-6

Orlando Neto 1 ; Pedro C. Silva 1

1 CMAF, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal
@article{CRMATH_2002__335_2_171_0,
     author = {Orlando Neto and Pedro C. Silva},
     title = {Holonomic systems with solutions ramified along a~cusp},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {171--176},
     publisher = {Elsevier},
     volume = {335},
     number = {2},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02436-6},
     language = {en},
}
TY  - JOUR
AU  - Orlando Neto
AU  - Pedro C. Silva
TI  - Holonomic systems with solutions ramified along a cusp
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 171
EP  - 176
VL  - 335
IS  - 2
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02436-6
LA  - en
ID  - CRMATH_2002__335_2_171_0
ER  - 
%0 Journal Article
%A Orlando Neto
%A Pedro C. Silva
%T Holonomic systems with solutions ramified along a cusp
%J Comptes Rendus. Mathématique
%D 2002
%P 171-176
%V 335
%N 2
%I Elsevier
%R 10.1016/S1631-073X(02)02436-6
%G en
%F CRMATH_2002__335_2_171_0
Orlando Neto; Pedro C. Silva. Holonomic systems with solutions ramified along a cusp. Comptes Rendus. Mathématique, Volume 335 (2002) no. 2, pp. 171-176. doi : 10.1016/S1631-073X(02)02436-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02436-6/

[1] F. Beuckers; G. Heckman The monodromy of the hypergeometric function nFn−1, Invent. Math., Volume 95 (1989), pp. 325-354

[2] J.-E. Bjork Analytic 𝒟-modules and Applications, Kluwer Academic, 1993

[3] M. Kashiwara; T. Kawai On holonomic systems of microdifferential equations III, Publ. Res. Inst. Math. Sci., Volume 17 (1981), pp. 813-979

[4] A.H. Levelt Hypergeometric functions, Indag. Math., Volume 23 (1961), pp. 361-403

[5] O. Neto A microlocal Riemann–Hilbert correspondence, Comp. Math., Volume 127 (2001), pp. 229-241

[6] P. Schapira Microdifferential Systems in the Complex Domain, Springer-Verlag, 1985

[7] M. Sato; M. Kashiwara; T. Kimura; T. Oshima Micro-local analysis of prehomogeneous vector spaces, Invent. Math., Volume 62 (1980), pp. 117-178

Cité par Sources :

Commentaires - Politique