Nous considérons l'équation de Schrödinger non linéaire
We consider the nonlinear Schödinger equation
Accepté le :
Publié le :
Dario Bambusi 1 ; Benoît Grébert 2
@article{CRMATH_2003__337_6_409_0, author = {Dario Bambusi and Beno{\^\i}t Gr\'ebert}, title = {Forme normale pour {NLS} en dimension quelconque}, journal = {Comptes Rendus. Math\'ematique}, pages = {409--414}, publisher = {Elsevier}, volume = {337}, number = {6}, year = {2003}, doi = {10.1016/S1631-073X(03)00368-6}, language = {fr}, }
Dario Bambusi; Benoît Grébert. Forme normale pour NLS en dimension quelconque. Comptes Rendus. Mathématique, Volume 337 (2003) no. 6, pp. 409-414. doi : 10.1016/S1631-073X(03)00368-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00368-6/
[1] Birkhoff normal form for some nonlinear PDEs, Commun. Math. Phys., Volume 234 (2003), pp. 253-285
[2] D. Bambusi, Averaging theorem for quasilinear Hamiltonian PDEs, Ann. Inst. H. Poincaré, in press
[3] Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equation, GAFA, Volume 6 (1996), pp. 201-230
[4] Quasi periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equation, Ann. of Math., Volume 148 (1998), pp. 363-439
[5] On diffusion in high dimensional Hamiltonian systems and PDE, J. Anal. Math., Volume 80 (2000), pp. 1-35
[6] J. Bourgain, Green functions estimates for lattice Schrödinger operators and applications, Preprint, 2003
[7] Problèmes de petits diviseurs dans les équations aux dérivées partielles, Panorama et Synthèses, 9, SMF, Paris, 2000
[8] Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., Volume 46 (1993), pp. 1409-1501
[9] The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc., Volume 7 (1982), pp. 65-222
[10] Nearly Integrable Infinite-Dimensional Hamiltonian Systems, Lecture Notes in Math., 1556, Springer, 1994
[11] Analysis of Hamiltonian PDEs, Oxford Lecture Ser. Math. Appl., 19, Oxford University Press, Oxford, 2000
Cité par Sources :
Commentaires - Politique