We classify regular holonomic -modules whose characteristic variety is contained in the union of conormal bundles to the orbits of the group of invertible matrices. The main result is an equivalence between the category of such -modules and the one of graded modules of finite type over a Weyl algebra.
On classifie les -modules holonômes réguliers dont la variéte caractéristique est contenu dans la réunion des fibrés conormaux aux orbites du groupe des matrices inversibles. Le résultat principal est une équivalence entre la catégorie de tels -modules et celle des modules gradués de type fini sur une algèbre de Weyl.
Accepted:
Published online:
Philibert Nang 1
@article{CRMATH_2004__338_2_139_0, author = {Philibert Nang}, title = {$ \mathcal{D}$-modules associated to 3{\texttimes}3 matrices}, journal = {Comptes Rendus. Math\'ematique}, pages = {139--144}, publisher = {Elsevier}, volume = {338}, number = {2}, year = {2004}, doi = {10.1016/j.crma.2003.11.003}, language = {en}, }
Philibert Nang. $ \mathcal{D}$-modules associated to 3×3 matrices. Comptes Rendus. Mathématique, Volume 338 (2004) no. 2, pp. 139-144. doi : 10.1016/j.crma.2003.11.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.11.003/
[1] D-modules holonômes réguliers en une variable, Mathématiques et Physique, Séminaire de L'ENS, Progr. Math., vol. 37, 1972–1982, pp. 313-321
[2] D-modules et faisceaux pervers dont le support singulier est un croisement normal, I, Ann. Inst. Fourier, Volume 35 (1983) no. 1, pp. 1-48 (II Astérisque, 130, 1985, pp. 240-259)
[3] Algebraic description of certain categories of D-modules, Functionnal. Anal. i Prilozhen., Volume 19 (1985) no. 3, pp. 56-57
[4] On the maximal overdetermined systems of linear partial differential equations I, Publ. Res. Inst. Math. Sci., Volume 10 (1975), pp. 563-579
[5] On holonomic systems of linear partial differential equations II, Invent. Math., Volume 49 (1978), pp. 121-135
[6] Algebraic study of systems of partial differential equations, Mem. Soc. Math. France, Volume 63 (123) (1995) no. 4
[7] D-modules and microlocal calculus, Iwanami Series in Modern Mathematics, Transl. Math. Monographs, vol. 217, American Mathematical Society, 2003
[8] On holonomic systems of microdifferential equations III: Systems with regular singularities, Publ. Res. Inst. Math. Sci., Volume 17 (1981), pp. 813-979
[9] Perverse sheaves with regular singularities along the curve xn=yn, Comment. Math. Helv., Volume 63 (1988), pp. 89-102
[10] Singular Points of Complex Hypersurfaces, Annals of Math. Stud., vol. 61, Princeton Univ. Press, 1968
[11] D-modules associated to the group of similitudes, Publ. Res. Inst. Math. Sci., Volume 35 (1999) no. 2, pp. 223-247
Cited by Sources:
Comments - Policy