Comptes Rendus
Numerical Analysis
Asymptotically balanced schemes for non-homogeneous hyperbolic systems – application to the Shallow Water equations
Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 85-90.

In this work we introduce a class of balanced numerical schemes, up to second order, for the solution of general non-homogeneous hyperbolic systems of conservation laws. We give a general technique to build such schemes. We also prove that they balance up to second order a large class of steady solutions in the whole domain but some subset whose measure tends to zero as the grid size decreases to zero. We finally present an application to Shallow Water equations that exhibit the good performances of some of the schemes introduced.

Dans ce travail nous introduisons une classe de schémas numériques equilibrés au second ordre pour la solution de systèmes hyperboliques de lois de conservation. Nous donnons une technique générale pour construire ce type de schémas. Nous prouvons que ces schémas équilibrent au second ordre une grande classe de solutions stationaires, dans tout le domaine, excepté un sous-ensemble de mesure qui tend vers zéro lorsque la taille de la maille tend vers zéro. Nous présentons finalement une application aux équations de Saint-Venant qui montre les bonnes performances de quelques-uns des schémas présentés.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2003.11.008
Tomás Chacón Rebollo 1; Antonio Domı́nguez Delgado 2; Enrique D. Fernández Nieto 2

1 Dpto Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, c/Tarfia s/n, 41012 Sevilla, Spain
2 Dpto Matemática Aplicada I, Universidad de Sevilla, Avda. Reina Mercedes N. 2, 41012 Sevilla, Spain
@article{CRMATH_2004__338_1_85_0,
     author = {Tom\'as Chac\'on Rebollo and Antonio Dom{\i}́nguez Delgado and Enrique D. Fern\'andez Nieto},
     title = {Asymptotically balanced schemes for non-homogeneous hyperbolic systems {\textendash} application to the {Shallow} {Water} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {85--90},
     publisher = {Elsevier},
     volume = {338},
     number = {1},
     year = {2004},
     doi = {10.1016/j.crma.2003.11.008},
     language = {en},
}
TY  - JOUR
AU  - Tomás Chacón Rebollo
AU  - Antonio Domı́nguez Delgado
AU  - Enrique D. Fernández Nieto
TI  - Asymptotically balanced schemes for non-homogeneous hyperbolic systems – application to the Shallow Water equations
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 85
EP  - 90
VL  - 338
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2003.11.008
LA  - en
ID  - CRMATH_2004__338_1_85_0
ER  - 
%0 Journal Article
%A Tomás Chacón Rebollo
%A Antonio Domı́nguez Delgado
%A Enrique D. Fernández Nieto
%T Asymptotically balanced schemes for non-homogeneous hyperbolic systems – application to the Shallow Water equations
%J Comptes Rendus. Mathématique
%D 2004
%P 85-90
%V 338
%N 1
%I Elsevier
%R 10.1016/j.crma.2003.11.008
%G en
%F CRMATH_2004__338_1_85_0
Tomás Chacón Rebollo; Antonio Domı́nguez Delgado; Enrique D. Fernández Nieto. Asymptotically balanced schemes for non-homogeneous hyperbolic systems – application to the Shallow Water equations. Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 85-90. doi : 10.1016/j.crma.2003.11.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.11.008/

[1] A. Bermúdez; M.E. Vázquez Cendón Upwind methods for hyperbolic conservation laws with source terms, Comput. & Fluids, Volume 23 (1994) no. 8, pp. 1049-1071

[2] T. Chacón; A. Domı́nguez; E.D. Fernández-Nieto A family of stable numerical solvers for the shallow water equations with source terms, Comput. Methods Appl. Mech. Engrg., Volume 192 (2003), pp. 203-225

[3] T. Chacón; E.D. Fernández-Nieto; M. Gómez A flux-splitting solver for shallow water equations with source terms, Int. J. Numer. Methods Fluids, Volume 43 (2003), pp. 23-55

[4] E.D. Fernández-Nieto, Aproximación numérica de leyes de conservación hiperbólicas no homogéneas. Aplicación a las ecuaciones de Aguas Someras, Ph.D. Thesis Universidad de Sevilla, 2003

[5] J.M. Greenberg; A.Y. Leroux A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., Volume 33 (1996) no. 1, pp. 1-16

[6] S. Jin A steady-state capturing method for hyperbolic systems with geometrical source terms, Math. Modelling Numer. Anal., Volume 35 (2001) no. 4, pp. 631-645

[7] B. Perthame; C. Simeoni Convergence of the Upwind Interface Source method for hyperbolic conservation laws (T. Hou; E. Tadmor, eds.), Proceeding of Hyp 2002, Springer, 2003

[8] J.G. Zhou; D.M. Causon; C.G. Mingham; D.M. Ingram The surface gradient method for the treatment of source terms in the Shallow–Water equations, J. Comput. Phys., Volume 168 (2001), pp. 1-25

Cited by Sources:

Comments - Policy


Articles of potential interest

A consistent intermediate wave speed for a well-balanced HLLC solver

Enrique D. Fernández-Nieto; Didier Bresch; Jérôme Monnier

C. R. Math (2008)


A posteriori Variational Multiscale Methods for the 1D convection-diffusion equations

Tomás Chacón Rebollo; Antonio Domínguez-Delgado; Macarena Gómez Marmol

C. R. Méca (2023)


Derivation of the kε model for locally homogeneous turbulence by homogenization techniques

Tomás Chacón Rebollo; Daniel Franco Coronil

C. R. Math (2003)