Comptes Rendus
Numerical Analysis
Convergence of linear finite elements for diffusion equations with measure data
[Convergence de la méthode éléments finis P1 pour une équation de diffusion avec second membre mesure]
Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 81-84.

On prouve la convergence des solutions approchées, par la méthode des éléments finis P1, d'une équation de diffusion avec second membre mesure, vers la solution faible de cette équation.

We show here the convergence of the linear finite element approximate solutions of a diffusion equation to a weak solution, with weak regularity assumptions on the data.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2003.11.024

Thierry Gallouët 1 ; Raphaèle Herbin 1

1 Université de Provence, 39, rue Joliot-Curie, 13453 Marseille, France
@article{CRMATH_2004__338_1_81_0,
     author = {Thierry Gallou\"et and Rapha\`ele Herbin},
     title = {Convergence of linear finite elements for diffusion equations with measure data},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {81--84},
     publisher = {Elsevier},
     volume = {338},
     number = {1},
     year = {2004},
     doi = {10.1016/j.crma.2003.11.024},
     language = {en},
}
TY  - JOUR
AU  - Thierry Gallouët
AU  - Raphaèle Herbin
TI  - Convergence of linear finite elements for diffusion equations with measure data
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 81
EP  - 84
VL  - 338
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2003.11.024
LA  - en
ID  - CRMATH_2004__338_1_81_0
ER  - 
%0 Journal Article
%A Thierry Gallouët
%A Raphaèle Herbin
%T Convergence of linear finite elements for diffusion equations with measure data
%J Comptes Rendus. Mathématique
%D 2004
%P 81-84
%V 338
%N 1
%I Elsevier
%R 10.1016/j.crma.2003.11.024
%G en
%F CRMATH_2004__338_1_81_0
Thierry Gallouët; Raphaèle Herbin. Convergence of linear finite elements for diffusion equations with measure data. Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 81-84. doi : 10.1016/j.crma.2003.11.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.11.024/

[1] L. Boccardo; T. Gallouët Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., Volume 87 (1989), pp. 241-273

[2] P.G. Ciarlet Basic error estimates for elliptic problems, Handbook of Numerical Analysis, vol. II, North-Holland, Amsterdam, 1991, pp. 17-352

[3] J. Droniou, T. Gallouët, R. Herbin, A finite volume scheme for a noncoercive elliptic equation with measure data, SIAM J. Numer. Anal. (2003) in press

[4] R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, in: P.G. Ciarlet, J.-L. Lions (Eds.), Handbook of Numerical Analysis, vol. VII, North-Holland, pp. 713–1020

[5] T. Gallouët; R. Herbin Finite volume methods for diffusion problems and irregular data (F. Benkhaldoun; M. Hänel; R. Vilsmeier, eds.), Finite Volumes for Complex Applications, Problems and Perspectives, II, Hermes, 1999, pp. 155-162

[6] R.A. Nicolaides The covolume approach to computing incompressible flows (M.D. Gunzburger; R.A. Nicolaides, eds.), Incompressible Computational Fluid Dynamics, 1993, pp. 295-333

  • F. Millar; I. Muga; S. Rojas; K. G. Van der Zee Projection in negative norms and the regularization of rough linear functionals, Numerische Mathematik, Volume 150 (2022) no. 4, p. 1087 | DOI:10.1007/s00211-022-01278-z
  • Johannes Kraus; Svetoslav Nakov; Sergey Repin Reliable Computer Simulation Methods for Electrostatic Biomolecular Models Based on the Poisson–Boltzmann Equation, Computational Methods in Applied Mathematics, Volume 20 (2020) no. 4, p. 643 | DOI:10.1515/cmam-2020-0022
  • R. Eymard; T. Gallouët; C. Guichard; R. Herbin; R. Masson TP or not TP, that is the question, Computational Geosciences, Volume 18 (2014) no. 3-4, p. 285 | DOI:10.1007/s10596-013-9392-9
  • Ali Abdullah Yahya; Jieqing Tan; Min Hu A blending method based on partial differential equations for image denoising, Multimedia Tools and Applications, Volume 73 (2014) no. 3, p. 1843 | DOI:10.1007/s11042-013-1586-6
  • S. FAURE; D. PHAM; R. TEMAM COMPARISON OF FINITE VOLUME AND FINITE DIFFERENCE METHODS AND APPLICATION, Analysis and Applications, Volume 04 (2006) no. 02, p. 163 | DOI:10.1142/s0219530506000723
  • J. Casado-Díaz; T. Chacón Rebollo; V. Girault; M. Gómez Mármol; F. Murat Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L 1, Numerische Mathematik, Volume 105 (2006) no. 3, p. 337 | DOI:10.1007/s00211-006-0033-2

Cité par 6 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: