[Convergence de la méthode éléments finis P1 pour une équation de diffusion avec second membre mesure]
On prouve la convergence des solutions approchées, par la méthode des éléments finis P1, d'une équation de diffusion avec second membre mesure, vers la solution faible de cette équation.
We show here the convergence of the linear finite element approximate solutions of a diffusion equation to a weak solution, with weak regularity assumptions on the data.
Accepté le :
Publié le :
Thierry Gallouët 1 ; Raphaèle Herbin 1
@article{CRMATH_2004__338_1_81_0, author = {Thierry Gallou\"et and Rapha\`ele Herbin}, title = {Convergence of linear finite elements for diffusion equations with measure data}, journal = {Comptes Rendus. Math\'ematique}, pages = {81--84}, publisher = {Elsevier}, volume = {338}, number = {1}, year = {2004}, doi = {10.1016/j.crma.2003.11.024}, language = {en}, }
TY - JOUR AU - Thierry Gallouët AU - Raphaèle Herbin TI - Convergence of linear finite elements for diffusion equations with measure data JO - Comptes Rendus. Mathématique PY - 2004 SP - 81 EP - 84 VL - 338 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2003.11.024 LA - en ID - CRMATH_2004__338_1_81_0 ER -
Thierry Gallouët; Raphaèle Herbin. Convergence of linear finite elements for diffusion equations with measure data. Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 81-84. doi : 10.1016/j.crma.2003.11.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.11.024/
[1] Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., Volume 87 (1989), pp. 241-273
[2] Basic error estimates for elliptic problems, Handbook of Numerical Analysis, vol. II, North-Holland, Amsterdam, 1991, pp. 17-352
[3] J. Droniou, T. Gallouët, R. Herbin, A finite volume scheme for a noncoercive elliptic equation with measure data, SIAM J. Numer. Anal. (2003) in press
[4] R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, in: P.G. Ciarlet, J.-L. Lions (Eds.), Handbook of Numerical Analysis, vol. VII, North-Holland, pp. 713–1020
[5] Finite volume methods for diffusion problems and irregular data (F. Benkhaldoun; M. Hänel; R. Vilsmeier, eds.), Finite Volumes for Complex Applications, Problems and Perspectives, II, Hermes, 1999, pp. 155-162
[6] The covolume approach to computing incompressible flows (M.D. Gunzburger; R.A. Nicolaides, eds.), Incompressible Computational Fluid Dynamics, 1993, pp. 295-333
- Projection in negative norms and the regularization of rough linear functionals, Numerische Mathematik, Volume 150 (2022) no. 4, p. 1087 | DOI:10.1007/s00211-022-01278-z
- Reliable Computer Simulation Methods for Electrostatic Biomolecular Models Based on the Poisson–Boltzmann Equation, Computational Methods in Applied Mathematics, Volume 20 (2020) no. 4, p. 643 | DOI:10.1515/cmam-2020-0022
- TP or not TP, that is the question, Computational Geosciences, Volume 18 (2014) no. 3-4, p. 285 | DOI:10.1007/s10596-013-9392-9
- A blending method based on partial differential equations for image denoising, Multimedia Tools and Applications, Volume 73 (2014) no. 3, p. 1843 | DOI:10.1007/s11042-013-1586-6
- COMPARISON OF FINITE VOLUME AND FINITE DIFFERENCE METHODS AND APPLICATION, Analysis and Applications, Volume 04 (2006) no. 02, p. 163 | DOI:10.1142/s0219530506000723
- Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L 1, Numerische Mathematik, Volume 105 (2006) no. 3, p. 337 | DOI:10.1007/s00211-006-0033-2
Cité par 6 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier