We obtain a lower bound for the density of a real random variable on the Wiener space under an exponential moment condition of the divergence. We apply this result to the solution of a non-linear SDE.
Nous obtenons une minoration exponentielle de la densité d'une variable aléatoire réelle dans l'espace de Wiener sous une condition portant sur le moment exponentiel de la divergence. Nous appliquons ce résultat à la solution d'une EDS non-linéaire.
Accepted:
Published online:
Eulalia Nualart 1
@article{CRMATH_2004__338_1_77_0, author = {Eulalia Nualart}, title = {Exponential divergence estimates and heat kernel tail}, journal = {Comptes Rendus. Math\'ematique}, pages = {77--80}, publisher = {Elsevier}, volume = {338}, number = {1}, year = {2004}, doi = {10.1016/j.crma.2003.11.015}, language = {en}, }
Eulalia Nualart. Exponential divergence estimates and heat kernel tail. Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 77-80. doi : 10.1016/j.crma.2003.11.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.11.015/
[1] The price-volatility feedback rate: an implementable mathematical indicator of market stability, Math. Finance, Volume 13 (2003), pp. 17-35
Cited by Sources:
Comments - Policy