Let be a connected and simply-connected open subset of such that the geodesic distance in is equivalent to the Euclidean distance. Let there be given a Riemannian metric (gij) of class and of vanishing curvature in , such that the functions gij and their partial derivatives of order have continuous extensions to . Then there exists a connected open subset of containing and a Riemannian metric of class and of vanishing curvature in that extends the metric (gij).
Soit un ouvert connexe et simplement connexe de tel que la distance géodésique dans soit équivalente à la distance euclidienne. Soit (gij) une métrique riemannienne de classe et de courbure nulle dans , telle que les fonctions gij et leurs dérivées partielles d'ordre aient des extensions continues à . Alors il existe un ouvert connexe de contenant et une métrique riemannienne de classe et de courbure nulle dans qui prolonge la métrique (gij).
Accepted:
Published online:
Philippe G. Ciarlet 1; Cristinel Mardare 2
@article{CRMATH_2004__338_5_391_0, author = {Philippe G. Ciarlet and Cristinel Mardare}, title = {Extension of a {Riemannian} metric with vanishing curvature}, journal = {Comptes Rendus. Math\'ematique}, pages = {391--396}, publisher = {Elsevier}, volume = {338}, number = {5}, year = {2004}, doi = {10.1016/j.crma.2003.12.017}, language = {en}, }
Philippe G. Ciarlet; Cristinel Mardare. Extension of a Riemannian metric with vanishing curvature. Comptes Rendus. Mathématique, Volume 338 (2004) no. 5, pp. 391-396. doi : 10.1016/j.crma.2003.12.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.12.017/
[1] S. Anicic, H. Le Dret, A. Raoult, The infinitesimal rigid displacement lemma in Lipschitz coordinates and application to shells with minimal regularity, in press
[2] On the recovery of a surface with prescribed first and second fundamental forms, J. Math. Pures Appl., Volume 81 (2002), pp. 167-185
[3] P.G. Ciarlet, C. Mardare, On the recovery of a manifold with boundary in , C. R. Acad. Sci. Paris, Ser. I, in press
[4] P.G. Ciarlet, C. Mardare, Recovery of a manifold with boundary and its continuity as a function of its metric tensor, in press
[5] P.G. Ciarlet, C. Mardare, Extension of a surface in , in press
[6] P.G. Ciarlet, C. Mardare, Recovery of a surface with boundary and its continuity as a function of its two fundamental forms, in press
[7] Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., Volume 36 (1934), pp. 63-89
Cited by Sources:
Comments - Policy