Comptes Rendus
Numerical Analysis
Convergence of the Lagrange–Galerkin method for a fluid–rigid system
Comptes Rendus. Mathématique, Volume 339 (2004) no. 1, pp. 59-64.

In this Note, we consider a Lagrange–Galerkin scheme to approximate a two dimensional fluid–rigid body problem. The system is modelled by the incompressible Navier–Stokes equations in the fluid part, coupled with ordinary differential equations for the dynamics of the rigid body. In this problem, the equations of the fluid are written in a domain whose variation is one of the unknowns. We introduce a numerical method based on the use of characteristics and on finite elements with a fixed mesh. Our main result asserts the convergence of this scheme.

Dans cette Note, nous considérons un schéma de Lagrange–Galerkin pour approcher un problème fluide–rigide. Le système est modélisé par les équations de Navier–Stokes incompressible, pour la partie fluide, couplées avec des équations différentielles ordinaires pour la dynamique du corps rigide. Dans ce problème, les équations du fluide sont écrites sur un domaine dont la variation est une des inconnues. Nous introduisons une méthode numérique basée sur l'utilisation des caractéristiques et des éléments finis associés à un maillage fixe. Notre résultat principal est la convergence de ce schéma.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.04.007
Jorge San Martı́n 1; Jean-Francois Scheid 2; Takéo Takahashi 2; Marius Tucsnak 2

1 Departemento de Ingenierı́a Matemática, Universidad de Chile, Casilla 170/3-Correo 3, Santiago, Chile
2 Institut Elie Cartan, faculté des sciences, BP 239, 54506 Vandoeuvre-lès-Nancy cedex, France
@article{CRMATH_2004__339_1_59_0,
     author = {Jorge San Mart{\i}́n and Jean-Francois Scheid and Tak\'eo Takahashi and Marius Tucsnak},
     title = {Convergence of the {Lagrange{\textendash}Galerkin} method for a fluid{\textendash}rigid system},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {59--64},
     publisher = {Elsevier},
     volume = {339},
     number = {1},
     year = {2004},
     doi = {10.1016/j.crma.2004.04.007},
     language = {en},
}
TY  - JOUR
AU  - Jorge San Martı́n
AU  - Jean-Francois Scheid
AU  - Takéo Takahashi
AU  - Marius Tucsnak
TI  - Convergence of the Lagrange–Galerkin method for a fluid–rigid system
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 59
EP  - 64
VL  - 339
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2004.04.007
LA  - en
ID  - CRMATH_2004__339_1_59_0
ER  - 
%0 Journal Article
%A Jorge San Martı́n
%A Jean-Francois Scheid
%A Takéo Takahashi
%A Marius Tucsnak
%T Convergence of the Lagrange–Galerkin method for a fluid–rigid system
%J Comptes Rendus. Mathématique
%D 2004
%P 59-64
%V 339
%N 1
%I Elsevier
%R 10.1016/j.crma.2004.04.007
%G en
%F CRMATH_2004__339_1_59_0
Jorge San Martı́n; Jean-Francois Scheid; Takéo Takahashi; Marius Tucsnak. Convergence of the Lagrange–Galerkin method for a fluid–rigid system. Comptes Rendus. Mathématique, Volume 339 (2004) no. 1, pp. 59-64. doi : 10.1016/j.crma.2004.04.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.04.007/

[1] Y. Achdou; J.-L. Guermond Convergence analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier–Stokes equations, SIAM J. Numer. Anal., Volume 37 (2000) no. 3, pp. 799-826

[2] S.C. Brenner; L.R. Scott The Mathematical Theory of Finite Element Methods, Texts Appl. Math., vol. 15, Springer-Verlag, New York, 1994

[3] B. Desjardins; M.J. Esteban Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Rational Mech. Anal., Volume 146 (1999) no. 1, pp. 59-71

[4] B. Desjardins; M.J. Esteban On weak solutions for fluid–rigid structure interaction: compressible and incompressible models, Comm. Partial Differential Equations, Volume 25 (2000) no. 7–8, pp. 1399-1413

[5] R. Glowinski; T.-W. Pan; T.I. Hesla; D.D. Joseph; J. Périaux A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, J. Comput. Phys., Volume 169 (2001) no. 2, pp. 363-426

[6] R. Glowinski; T.-W. Pan; T.I. Hesla; D.D. Joseph; J. Périaux A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow, Comput. Methods Appl. Mech. Engrg., Volume 184 (2000) no. 2–4, pp. 241-267 (Vistas in domain decomposition and parallel processing in computational mechanics)

[7] C. Grandmont; V. Guimet; Y. Maday Numerical analysis of some decoupling techniques for the approximation of the unsteady fluid structure interaction, Math. Models Methods Appl. Sci., Volume 11 (2001) no. 8, pp. 1349-1377

[8] C. Grandmont; Y. Maday Existence for an unsteady fluid–structure interaction problem, Math. Model. Numer. Anal. (M2AN), Volume 34 (2000) no. 3, pp. 609-636

[9] M.D. Gunzburger; H.-C. Lee; G.A. Seregin Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech., Volume 2 (2000) no. 3, pp. 219-266

[10] B. Maury A many-body lubrication model, C. R. Acad. Sci. Paris Sér. I Math., Volume 325 (1997) no. 9, pp. 1053-1058

[11] B. Maury Direct simulations of 2D fluid-particle flows in biperiodic domains, J. Comput. Phys., Volume 156 (1999) no. 2, pp. 325-351

[12] B. Maury; R. Glowinski Fluid-particle flow: a symmetric formulation, C. R. Acad. Sci. Paris Sér. I Math., Volume 324 (1997) no. 9, pp. 1079-1084

[13] F. Nobile, Numerical approximation of fluid–structure interaction problems with application to haemodynamics, Thèse de doctorat de l'École Polytechnique Fédérale de Lausanne, 2001

[14] O. Pironneau On the transport–diffusion algorithm and its applications to the Navier–Stokes equations, Numer. Math., Volume 38 (1982) no. 3, pp. 309-332

[15] J.A. San Martı́n, J. F. Scheid, T. Takahashi, M. Tucsnak, Convergence of the Lagrange–Galerkin method for the equations modelling the motion of a fluid–rigid system, submitted for publication

[16] J.A. San Martı́n; V. Starovoitov; M. Tucsnak Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Rational Mech. Anal., Volume 161 (2002) no. 2, pp. 113-147

[17] E. Süli Convergence and nonlinear stability of the Lagrange–Galerkin method for the Navier–Stokes equations, Numer. Math., Volume 53 (1988) no. 4, pp. 459-483

[18] T. Takahashi, Existence of strong solutions for the equations modelling the motion of a rigid–fluid system in a bounded domain, Adv. Differential Equations, in press

[19] T. Takahashi; M. Tucsnak Global strong solutions for the two dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech., Volume 6 (2004), pp. 53-77

Cited by Sources:

INRIA Lorraine, Projet CORIDA.

Comments - Policy


Articles of potential interest

A time discretization scheme of a characteristics method for a fluid–rigid system with discontinuous density

Jorge San Martín; Jean-François Scheid; Loredana Smaranda

C. R. Math (2010)


Existence of strong solutions for the problem of a rigid-fluid system

Takéo Takahashi

C. R. Math (2003)