In this Note, we consider a Lagrange–Galerkin scheme to approximate a two dimensional fluid–rigid body problem. The system is modelled by the incompressible Navier–Stokes equations in the fluid part, coupled with ordinary differential equations for the dynamics of the rigid body. In this problem, the equations of the fluid are written in a domain whose variation is one of the unknowns. We introduce a numerical method based on the use of characteristics and on finite elements with a fixed mesh. Our main result asserts the convergence of this scheme.
Dans cette Note, nous considérons un schéma de Lagrange–Galerkin pour approcher un problème fluide–rigide. Le système est modélisé par les équations de Navier–Stokes incompressible, pour la partie fluide, couplées avec des équations différentielles ordinaires pour la dynamique du corps rigide. Dans ce problème, les équations du fluide sont écrites sur un domaine dont la variation est une des inconnues. Nous introduisons une méthode numérique basée sur l'utilisation des caractéristiques et des éléments finis associés à un maillage fixe. Notre résultat principal est la convergence de ce schéma.
Accepted:
Published online:
Jorge San Martı́n 1; Jean-Francois Scheid 2; Takéo Takahashi 2; Marius Tucsnak 2
@article{CRMATH_2004__339_1_59_0, author = {Jorge San Mart{\i}́n and Jean-Francois Scheid and Tak\'eo Takahashi and Marius Tucsnak}, title = {Convergence of the {Lagrange{\textendash}Galerkin} method for a fluid{\textendash}rigid system}, journal = {Comptes Rendus. Math\'ematique}, pages = {59--64}, publisher = {Elsevier}, volume = {339}, number = {1}, year = {2004}, doi = {10.1016/j.crma.2004.04.007}, language = {en}, }
TY - JOUR AU - Jorge San Martı́n AU - Jean-Francois Scheid AU - Takéo Takahashi AU - Marius Tucsnak TI - Convergence of the Lagrange–Galerkin method for a fluid–rigid system JO - Comptes Rendus. Mathématique PY - 2004 SP - 59 EP - 64 VL - 339 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2004.04.007 LA - en ID - CRMATH_2004__339_1_59_0 ER -
%0 Journal Article %A Jorge San Martı́n %A Jean-Francois Scheid %A Takéo Takahashi %A Marius Tucsnak %T Convergence of the Lagrange–Galerkin method for a fluid–rigid system %J Comptes Rendus. Mathématique %D 2004 %P 59-64 %V 339 %N 1 %I Elsevier %R 10.1016/j.crma.2004.04.007 %G en %F CRMATH_2004__339_1_59_0
Jorge San Martı́n; Jean-Francois Scheid; Takéo Takahashi; Marius Tucsnak. Convergence of the Lagrange–Galerkin method for a fluid–rigid system. Comptes Rendus. Mathématique, Volume 339 (2004) no. 1, pp. 59-64. doi : 10.1016/j.crma.2004.04.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.04.007/
[1] Convergence analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier–Stokes equations, SIAM J. Numer. Anal., Volume 37 (2000) no. 3, pp. 799-826
[2] The Mathematical Theory of Finite Element Methods, Texts Appl. Math., vol. 15, Springer-Verlag, New York, 1994
[3] Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Rational Mech. Anal., Volume 146 (1999) no. 1, pp. 59-71
[4] On weak solutions for fluid–rigid structure interaction: compressible and incompressible models, Comm. Partial Differential Equations, Volume 25 (2000) no. 7–8, pp. 1399-1413
[5] A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, J. Comput. Phys., Volume 169 (2001) no. 2, pp. 363-426
[6] A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow, Comput. Methods Appl. Mech. Engrg., Volume 184 (2000) no. 2–4, pp. 241-267 (Vistas in domain decomposition and parallel processing in computational mechanics)
[7] Numerical analysis of some decoupling techniques for the approximation of the unsteady fluid structure interaction, Math. Models Methods Appl. Sci., Volume 11 (2001) no. 8, pp. 1349-1377
[8] Existence for an unsteady fluid–structure interaction problem, Math. Model. Numer. Anal. (M2AN), Volume 34 (2000) no. 3, pp. 609-636
[9] Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech., Volume 2 (2000) no. 3, pp. 219-266
[10] A many-body lubrication model, C. R. Acad. Sci. Paris Sér. I Math., Volume 325 (1997) no. 9, pp. 1053-1058
[11] Direct simulations of 2D fluid-particle flows in biperiodic domains, J. Comput. Phys., Volume 156 (1999) no. 2, pp. 325-351
[12] Fluid-particle flow: a symmetric formulation, C. R. Acad. Sci. Paris Sér. I Math., Volume 324 (1997) no. 9, pp. 1079-1084
[13] F. Nobile, Numerical approximation of fluid–structure interaction problems with application to haemodynamics, Thèse de doctorat de l'École Polytechnique Fédérale de Lausanne, 2001
[14] On the transport–diffusion algorithm and its applications to the Navier–Stokes equations, Numer. Math., Volume 38 (1982) no. 3, pp. 309-332
[15] J.A. San Martı́n, J. F. Scheid, T. Takahashi, M. Tucsnak, Convergence of the Lagrange–Galerkin method for the equations modelling the motion of a fluid–rigid system, submitted for publication
[16] Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Rational Mech. Anal., Volume 161 (2002) no. 2, pp. 113-147
[17] Convergence and nonlinear stability of the Lagrange–Galerkin method for the Navier–Stokes equations, Numer. Math., Volume 53 (1988) no. 4, pp. 459-483
[18] T. Takahashi, Existence of strong solutions for the equations modelling the motion of a rigid–fluid system in a bounded domain, Adv. Differential Equations, in press
[19] Global strong solutions for the two dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech., Volume 6 (2004), pp. 53-77
Cited by Sources:
☆ INRIA Lorraine, Projet CORIDA.
Comments - Policy