This paper is devoted to the estimation of tail index and extreme quantiles in actuarial applications. In this domain, the observations are often censored. Nevertheless, conversely to the classical randomly right-censored model, the censoring variables are always observed. Therefore, under this assumption, we introduce new estimators and we study their asymptotic properties. Their behaviour are illustrated in a small simulation study.
Ce papier concerne l'estimation des indices de queues et des quantiles extrêmes dans des applications actuarielles. Dans ce domaine, les observations sont souvent censurées. Néanmoins, contrairement au modèle classique de censure aléatoire à droite, les données censurantes sont toujours observées. Sous cette condition, nous introduisons de nouveaux estimateurs et nous étudions leurs propriétés asymptotiques. Leur comportement est illustré sur la base de simulations.
Accepted:
Published online:
Emmanuel Delafosse 1; Armelle Guillou 1
@article{CRMATH_2004__339_4_287_0, author = {Emmanuel Delafosse and Armelle Guillou}, title = {Extreme quantiles estimation for actuarial applications}, journal = {Comptes Rendus. Math\'ematique}, pages = {287--292}, publisher = {Elsevier}, volume = {339}, number = {4}, year = {2004}, doi = {10.1016/j.crma.2004.06.005}, language = {en}, }
Emmanuel Delafosse; Armelle Guillou. Extreme quantiles estimation for actuarial applications. Comptes Rendus. Mathématique, Volume 339 (2004) no. 4, pp. 287-292. doi : 10.1016/j.crma.2004.06.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.06.005/
[1] Residual life time at great age, Ann. Probab., Volume 2 (1974), pp. 792-804
[2] Models for exceedances over high thresholds, J. Roy. Statist. Soc. Ser. B, Volume 52 (1990), pp. 393-442
[3] On some simple estimates of an exponent of regular variation, J. Roy. Statist. Soc. Ser. B, Volume 44 (1982), pp. 37-42
[4] A simple general approach to inference about the tail of a distribution, Ann. Statist., Volume 3 (1975), pp. 1163-1174
[5] Statistical inference using extreme order statistics, Ann. Statist., Volume 3 (1975), pp. 119-131
[6] Estimation of parameters and large quantiles based on the k largest observations, J. Am. Statist. Assoc., Volume 73 (1978), pp. 812-815
Cited by Sources:
Comments - Policy