We prove a rigorous version of the following heuristic statement: if, in a spin glass model, the extended Ghirlanda–Guerra identities are valid, at given disorder the distribution of the overlap of two configurations is discrete, and its support (the smallest closed set that carries this distribution) is non-random.
Nous prouvons une version rigoureuse du fait suivant. Dans un modèle de verres de spins qui satisfait les identités de Ghirlanda–Guerra générales, à désordre donné, la distribution du recouvrement de deux configurations est discrète, et son support est non-aléatoire.
Accepted:
Published online:
Giorgio Parisi 1; Michel Talagrand 2
@article{CRMATH_2004__339_4_303_0, author = {Giorgio Parisi and Michel Talagrand}, title = {On the distribution of the overlaps at given disorder}, journal = {Comptes Rendus. Math\'ematique}, pages = {303--306}, publisher = {Elsevier}, volume = {339}, number = {4}, year = {2004}, doi = {10.1016/j.crma.2004.06.014}, language = {en}, }
Giorgio Parisi; Michel Talagrand. On the distribution of the overlaps at given disorder. Comptes Rendus. Mathématique, Volume 339 (2004) no. 4, pp. 303-306. doi : 10.1016/j.crma.2004.06.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.06.014/
[1] General properties of overlap distributions in disordered spin systems. Towards Parisi ultrametricity, J. Phys. A, Volume 31 (1998) no. 46, pp. 9149-9155
[2] Spin Glass Theory and Beyond, World Scientific, Singapore, 1987
[3] A sequence of approximate solutions to the S–K model for spin glasses, J. Phys. A, Volume 13 (1980), p. 115
[4] Field Theory, Disorder, Simulation, World Sci. Lecture Notes Phys., vol. 45, World Scientific, Singapore, 1992
[5] Rigorous low temperature results for the mean field p-spin interaction model, Probab. Theory Related Fields, Volume 117 (2000), pp. 303-360
[6] Spin Glasses, A Challenge to Mathematicians, Springer-Verlag, 2003
[7] M. Talagrand, The free energy of the mean field spherical model, Probab. Theory Related Fields, in press
Cited by Sources:
Comments - Policy