We study here the existence of time periodic solution for the Vlasov–Maxwell equations in a three dimensional bounded domain. We assume that the boundary of the domain is strictly star-shaped. We give a priori estimates for the kinetic and electro-magnetic energy, and also for the normal and tangential traces of the electro-magnetic field. This method allows us to treat both classical and relativistic cases.
Nous étudions l'existence de solution périodique en temps pour les équations de Vlasov–Maxwell dans un domaine borné tridimensionnel. On suppose que la frontière du domaine est strictement étoilée. Nous donnons également des estimations a priori pour l'énergie cinétique et électromagnétique ainsi que pour les traces normales et tangentielles du champ électromagnétique. La méthode utilisée permet de traiter à la fois les cas classique et relativiste.
Accepted:
Published online:
Mihai Bostan 1
@article{CRMATH_2004__339_6_451_0, author = {Mihai Bostan}, title = {Solutions p\'eriodiques en temps des \'equations de {Vlasov{\textendash}Maxwell}}, journal = {Comptes Rendus. Math\'ematique}, pages = {451--456}, publisher = {Elsevier}, volume = {339}, number = {6}, year = {2004}, doi = {10.1016/j.crma.2004.07.008}, language = {fr}, }
Mihai Bostan. Solutions périodiques en temps des équations de Vlasov–Maxwell. Comptes Rendus. Mathématique, Volume 339 (2004) no. 6, pp. 451-456. doi : 10.1016/j.crma.2004.07.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.07.008/
[1] Global existence of a weak solution of the Vlasov system of equations, URSS Comput. Math. Phys., Volume 15 (1975), pp. 131-143
[2] Weak solutions of the initial-boundary value problem for the Vlasov–Poisson system, Math. Methods Appl. Sci., Volume 17 (1994) no. 6, pp. 451-476
[3] Periodic solutions of the 1D Vlasov–Maxwell system with boundary conditions, Math. Methods Appl. Sci., Volume 23 (2000), pp. 1195-1221
[4] Permanent regimes for the 1D Vlasov–Poisson system with boundary conditions, SIAM J. Math. Anal., Volume 35 (2003) no. 4, pp. 922-948
[5] M. Bostan, Boundary value problem for the N dimensional time periodic Vlasov–Poisson system, soumis
[6] M. Bostan, Boundary value problem for the three dimensional time periodic Vlasov–Maxwell system, en préparation
[7] Global weak solutions of the Vlasov–Maxwell system, Commun. Pure Appl. Math., Volume XVII (1989), pp. 729-757
[8] A boundary value problem for the stationary Vlasov–Poisson equations: the plane diode, Commun. Pure Appl. Math., Volume XLIII (1990), pp. 473-507
[9] Global weak solutions of the Vlasov–Maxwell system with boundary conditions, Commun. Math. Phys., Volume 154 (1993), pp. 245-263
[10] Exact Controllability and Stabilization. The Multiplier Method, RAM, Masson, Paris, 1994
[11] Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system, Invent. Math., Volume 105 (1991), pp. 415-430
[12] Boundary value problems for the stationary Vlasov–Maxwell system, Forum Math., Volume 4 (1992), pp. 499-527
[13] On the classical solution in the large time of the two dimensional Vlasov equations, Osaka J. Math., Volume 15 (1978), pp. 245-261
Cited by Sources:
Comments - Policy