[Sur les inégalités de Sobolev logarithmiques pour les dérivées fractionnelles d'ordre supérieur]
On
Sur
Accepté le :
Publié le :
Athanase Cotsiolis 1 ; Nikolaos K. Tavoularis 1
@article{CRMATH_2005__340_3_205_0, author = {Athanase Cotsiolis and Nikolaos K. Tavoularis}, title = {On logarithmic {Sobolev} inequalities for higher order fractional derivatives}, journal = {Comptes Rendus. Math\'ematique}, pages = {205--208}, publisher = {Elsevier}, volume = {340}, number = {3}, year = {2005}, doi = {10.1016/j.crma.2004.11.030}, language = {en}, }
TY - JOUR AU - Athanase Cotsiolis AU - Nikolaos K. Tavoularis TI - On logarithmic Sobolev inequalities for higher order fractional derivatives JO - Comptes Rendus. Mathématique PY - 2005 SP - 205 EP - 208 VL - 340 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2004.11.030 LA - en ID - CRMATH_2005__340_3_205_0 ER -
Athanase Cotsiolis; Nikolaos K. Tavoularis. On logarithmic Sobolev inequalities for higher order fractional derivatives. Comptes Rendus. Mathématique, Volume 340 (2005) no. 3, pp. 205-208. doi : 10.1016/j.crma.2004.11.030. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.11.030/
[1] Sur les inégalités de Sobolev logarithmiques, 10, Société Mathématique de France, Paris, 2000
[2] Some Nonlinear Problems in Riemannian Geometry, Springer, 1998
[3] Inequalities in Fourier analysis, Ann. Math., Volume 102 (1975), pp. 159-182
[4] Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality, Ann. Math., Volume 138 (1993) no. 2, pp. 213-243
[5] On sharp Sobolev embedding and the logarithmic Sobolev inequalities, Bull. London Math. Soc., Volume 30 (1998), pp. 80-84
[6] Sharp Sobolev type inequalities for higher fractional derivatives, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 801-804
[7] Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., Volume 295 (2004), pp. 225-236
[8] Une initiation aux inégalités de Sobolev logarithmiques, Cours Spécialisés, 5, Société Mathématique de France, Paris, 1999
[9] Logarithmic Sobolev inequalities, Am. J. Math., Volume 97 (1975) no. 761, pp. 1061-1083
[10] Analysis, Amer. Math. Soc., 2001
[11] Nonlinear diffusions, hypercontractivity and the optimal
[12] Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inform. Control, Volume 2 (1959), pp. 255-269
[13] N.K. Tavoularis, Thèse de Doctorat de l'Université de Patras, Spécialité Mathématiques, 2004
- Asymptotic behaviors of normalized ground states for fractional Schrödinger equations, Archiv der Mathematik, Volume 124 (2025) no. 1, pp. 109-120 | DOI:10.1007/s00013-024-02069-8 | Zbl:1555.35146
- Fractional pseudo-parabolic equation with memory term and logarithmic nonlinearity: well-posedness, blow up and asymptotic stability, Communications in Nonlinear Science and Numerical Simulation, Volume 141 (2025), p. 30 (Id/No 108450) | DOI:10.1016/j.cnsns.2024.108450 | Zbl:1556.35362
- The Lifespan of Solutions for a Boussinesq‐Type Model, Mathematical Methods in the Applied Sciences (2025) | DOI:10.1002/mma.11067
- Concentrating solutions for a fractional p-Laplacian logarithmic Schrödinger equation, Analysis and Applications, Volume 22 (2024) no. 02, p. 311 | DOI:10.1142/s0219530523500288
- Revised logarithmic Sobolev inequalities of fractional order, Bulletin des Sciences Mathématiques, Volume 197 (2024), p. 9 (Id/No 103530) | DOI:10.1016/j.bulsci.2024.103530 | Zbl:7957535
- Existence and concentration of positive solutions for a fractional Schrödinger logarithmic equation, Complex Variables and Elliptic Equations, Volume 69 (2024) no. 2, pp. 317-348 | DOI:10.1080/17476933.2022.2133110 | Zbl:1532.35198
- Multiplicity of Normalized Solutions to a Fractional Logarithmic Schrödinger Equation, Fractal and Fractional, Volume 8 (2024) no. 7, p. 391 | DOI:10.3390/fractalfract8070391
- Solutions for a Logarithmic Fractional Schrödinger-Poisson System with Asymptotic Potential, Fractal and Fractional, Volume 8 (2024) no. 9, p. 528 | DOI:10.3390/fractalfract8090528
- Fractional Schrödinger equations with logarithmic and critical nonlinearities, Acta Mathematica Sinica. English Series, Volume 39 (2023) no. 2, pp. 285-325 | DOI:10.1007/s10114-023-1372-y | Zbl:1512.35615
- Strengthened fractional Sobolev type inequalities in Besov spaces, Potential Analysis, Volume 59 (2023) no. 4, pp. 2105-2121 | DOI:10.1007/s11118-022-10030-z | Zbl:1541.46016
- On fractional logarithmic Schrödinger equations, Advanced Nonlinear Studies, Volume 22 (2022), pp. 41-66 | DOI:10.1515/ans-2022-0002 | Zbl:1485.35396
- Ground states for fractional nonlocal equations with logarithmic nonlinearity, Opuscula Mathematica, Volume 42 (2022) no. 2, pp. 157-178 | DOI:10.7494/opmath.2022.42.2.157 | Zbl:1485.35202
- Combined effects of logarithmic and critical nonlinearities in fractional Laplacian problems, Advances in Differential Equations, Volume 26 (2021) no. 7-8, pp. 363-396 | Zbl:1480.35400
- Combined effects of logarithmic and superlinear nonlinearities in fractional Laplacian systems, Analysis and Mathematical Physics, Volume 11 (2021) no. 1, p. 34 (Id/No 9) | DOI:10.1007/s13324-020-00441-9 | Zbl:1456.35225
- Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity, Discrete and Continuous Dynamical Systems. Series S, Volume 14 (2021) no. 12, pp. 4337-4366 | DOI:10.3934/dcdss.2021121 | Zbl:1480.35395
- Multiple solutions for a class of fractional logarithmic Schrödinger equations, SN Partial Differential Equations and Applications, Volume 2 (2021) no. 6, p. 30 (Id/No 70) | DOI:10.1007/s42985-021-00124-5 | Zbl:1481.35195
- Positive solutions for the fractional Schrödinger equations with logarithmic and critical non-linearities, Transactions of the London Mathematical Society, Volume 8 (2021) no. 1, pp. 206-242 | DOI:10.1112/tlm3.12034 | Zbl:1537.35373
- Least energy solutions for fractional Kirchhoff problems with logarithmic nonlinearity, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 198 (2020), p. 19 (Id/No 111899) | DOI:10.1016/j.na.2020.111899 | Zbl:1440.35194
- Inequalities in statistics and information measures, Differential and integral inequalities, Cham: Springer, 2019, pp. 481-508 | DOI:10.1007/978-3-030-27407-8_16 | Zbl:1443.60025
- Existence of the global solution for fractional logarithmic Schrödinger equation, Computers Mathematics with Applications, Volume 75 (2018) no. 1, pp. 161-169 | DOI:10.1016/j.camwa.2017.09.010 | Zbl:1418.35374
- Logarithmic Sobolev inequality revisited, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 355 (2017) no. 4, pp. 447-451 | DOI:10.1016/j.crma.2017.02.009 | Zbl:1373.46027
- Initial boundary value problem for generalized logarithmic improved Boussinesq equation, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 10, pp. 3687-3697 | DOI:10.1002/mma.4255 | Zbl:1370.35201
- Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 155 (2017), pp. 52-64 | DOI:10.1016/j.na.2017.01.006 | Zbl:1368.35242
- Global existence and exponential growth of solution for the logarithmic Boussinesq-type equation, Journal of Mathematical Analysis and Applications, Volume 436 (2016) no. 2, pp. 990-1001 | DOI:10.1016/j.jmaa.2015.11.082 | Zbl:1336.35248
- Generalizations of entropy and information measures, Computation, cryptography, and network security, Cham: Springer, 2015, pp. 493-524 | DOI:10.1007/978-3-319-18275-9_22 | Zbl:1368.94061
- Generalized information for the
-order normal distribution, Journal of Probability and Statistics, Volume 2015 (2015), p. 9 (Id/No 385285) | DOI:10.1155/2015/385285 | Zbl:1426.62017 - Fractional logarithmic Schrödinger equations, Mathematical Methods in the Applied Sciences, Volume 38 (2015) no. 18, pp. 5207-5216 | DOI:10.1002/mma.3449 | Zbl:1334.35408
- Inequalities for the Fisher's information measures, Handbook of functional equations. Functional inequalities, New York, NY: Springer, 2014, pp. 281-313 | DOI:10.1007/978-1-4939-1246-9_13 | Zbl:1361.94029
- Upper bounds for fundamental solutions to non-local diffusion equations with divergence free drift, Journal of Functional Analysis, Volume 264 (2013) no. 10, pp. 2245-2268 | DOI:10.1016/j.jfa.2013.02.011 | Zbl:1278.35262
- Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz norms, Journal of Mathematical Analysis and Applications, Volume 396 (2012) no. 2, pp. 569-577 | DOI:10.1016/j.jmaa.2012.06.054 | Zbl:1254.26010
- Fractional Sobolev, Moser-Trudinger, Morrey-Sobolev inequalities under Lorentz norms, Journal of Mathematical Sciences (New York), Volume 166 (2010) no. 3, pp. 357-376 | DOI:10.1007/s10958-010-9872-6 | Zbl:1307.46027
- Logarithmic Sobolev Inequalities for Information Measures, IEEE Transactions on Information Theory, Volume 55 (2009) no. 6, p. 2554 | DOI:10.1109/tit.2009.2018179
- Logarithmic Sobolev inequalities: Regularizing effect of Lévy operators and asymptotic convergence in the Lévy–Fokker–Planck equation, Stochastics, Volume 81 (2009) no. 3-4, p. 401 | DOI:10.1080/17442500903080306
Cité par 33 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier