Comptes Rendus
Partial Differential Equations
On logarithmic Sobolev inequalities for higher order fractional derivatives
[Sur les inégalités de Sobolev logarithmiques pour les dérivées fractionnelles d'ordre supérieur]
Comptes Rendus. Mathématique, Volume 340 (2005) no. 3, pp. 205-208.

On Rn, we prove the existence of sharp logarithmic Sobolev inequalities with higher fractional derivatives. Let s be a positive real number. Any function fHs(Rn) satisfies

Rn|f(x)|2ln(|f(x)|2f22)dx+(n+nslnα+lnsΓ(n2)Γ(n2s))f22α2πs(Δ)s/2f22
with α>0 be any number and where the operators (Δ)s/2 in Fourier spaces are defined by (Δ)s/2fˆ(k):=(2π|k|)sfˆ(k).

Sur Rn, on établi l'existence d'inégalités de Sobolev logarithmiques optimales pour les dérivées fractionnelles d'ordre supérieur. Soit s et α deux réels positifs. Pour toute fonction fHs(Rn), on établit l'inégalité suivante :

Rn|f(x)|2ln(|f(x)|2f22)dx+(n+nslnα+lnsΓ(n2)Γ(n2s))f22α2πs(Δ)s/2f22.
L'opérateur (Δ)s/2 est defini dans les espaces de Fourier par (Δ)s/2fˆ(k):=(2π|k|)sfˆ(k).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.11.030

Athanase Cotsiolis 1 ; Nikolaos K. Tavoularis 1

1 Department of Mathematics, University of Patras, Patras 26110, Greece
@article{CRMATH_2005__340_3_205_0,
     author = {Athanase Cotsiolis and Nikolaos K. Tavoularis},
     title = {On logarithmic {Sobolev} inequalities for higher order fractional derivatives},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {205--208},
     publisher = {Elsevier},
     volume = {340},
     number = {3},
     year = {2005},
     doi = {10.1016/j.crma.2004.11.030},
     language = {en},
}
TY  - JOUR
AU  - Athanase Cotsiolis
AU  - Nikolaos K. Tavoularis
TI  - On logarithmic Sobolev inequalities for higher order fractional derivatives
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 205
EP  - 208
VL  - 340
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2004.11.030
LA  - en
ID  - CRMATH_2005__340_3_205_0
ER  - 
%0 Journal Article
%A Athanase Cotsiolis
%A Nikolaos K. Tavoularis
%T On logarithmic Sobolev inequalities for higher order fractional derivatives
%J Comptes Rendus. Mathématique
%D 2005
%P 205-208
%V 340
%N 3
%I Elsevier
%R 10.1016/j.crma.2004.11.030
%G en
%F CRMATH_2005__340_3_205_0
Athanase Cotsiolis; Nikolaos K. Tavoularis. On logarithmic Sobolev inequalities for higher order fractional derivatives. Comptes Rendus. Mathématique, Volume 340 (2005) no. 3, pp. 205-208. doi : 10.1016/j.crma.2004.11.030. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.11.030/

[1] C. Ané; S. Blachère; D. Chafaï; P. Fougères; I. Gentil; F. Malrieu; C. Roberto; G. Scheffer Sur les inégalités de Sobolev logarithmiques, 10, Société Mathématique de France, Paris, 2000

[2] Th. Aubin Some Nonlinear Problems in Riemannian Geometry, Springer, 1998

[3] W. Beckner Inequalities in Fourier analysis, Ann. Math., Volume 102 (1975), pp. 159-182

[4] W. Beckner Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality, Ann. Math., Volume 138 (1993) no. 2, pp. 213-243

[5] W. Beckner; M. Pearson On sharp Sobolev embedding and the logarithmic Sobolev inequalities, Bull. London Math. Soc., Volume 30 (1998), pp. 80-84

[6] A. Cotsiolis; N.K. Tavoularis Sharp Sobolev type inequalities for higher fractional derivatives, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 801-804

[7] A. Cotsiolis; N.K. Tavoularis Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., Volume 295 (2004), pp. 225-236

[8] R. Gilles Une initiation aux inégalités de Sobolev logarithmiques, Cours Spécialisés, 5, Société Mathématique de France, Paris, 1999

[9] L. Gross Logarithmic Sobolev inequalities, Am. J. Math., Volume 97 (1975) no. 761, pp. 1061-1083

[10] E. Lieb; M. Loss Analysis, Amer. Math. Soc., 2001

[11] M. Del Pino; J. Dolbeault; I. Gentil Nonlinear diffusions, hypercontractivity and the optimal Lp-Euclidean logarithmic Sobolev inequality, J. Math. Anal. Appl., Volume 293 (2004) no. 2, pp. 375-388

[12] A.J. Stam Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inform. Control, Volume 2 (1959), pp. 255-269

[13] N.K. Tavoularis, Thèse de Doctorat de l'Université de Patras, Spécialité Mathématiques, 2004

  • Jun Lei; Chunliu Chen; Yue Wang Asymptotic behaviors of normalized ground states for fractional Schrödinger equations, Archiv der Mathematik, Volume 124 (2025) no. 1, pp. 109-120 | DOI:10.1007/s00013-024-02069-8 | Zbl:1555.35146
  • Huafei Di; Yi Qiu; Liang Li Fractional pseudo-parabolic equation with memory term and logarithmic nonlinearity: well-posedness, blow up and asymptotic stability, Communications in Nonlinear Science and Numerical Simulation, Volume 141 (2025), p. 30 (Id/No 108450) | DOI:10.1016/j.cnsns.2024.108450 | Zbl:1556.35362
  • Faramarz Tahamtani; Mohammad Shahrouzi The Lifespan of Solutions for a Boussinesq‐Type Model, Mathematical Methods in the Applied Sciences (2025) | DOI:10.1002/mma.11067
  • Claudianor O. Alves; Vincenzo Ambrosio Concentrating solutions for a fractional p-Laplacian logarithmic Schrödinger equation, Analysis and Applications, Volume 22 (2024) no. 02, p. 311 | DOI:10.1142/s0219530523500288
  • Marianna Chatzakou; Michael Ruzhansky Revised logarithmic Sobolev inequalities of fractional order, Bulletin des Sciences Mathématiques, Volume 197 (2024), p. 9 (Id/No 103530) | DOI:10.1016/j.bulsci.2024.103530 | Zbl:7957535
  • Li Wang; Shenghao Feng; Kun Cheng Existence and concentration of positive solutions for a fractional Schrödinger logarithmic equation, Complex Variables and Elliptic Equations, Volume 69 (2024) no. 2, pp. 317-348 | DOI:10.1080/17476933.2022.2133110 | Zbl:1532.35198
  • Yan-Cheng Lv; Gui-Dong Li Multiplicity of Normalized Solutions to a Fractional Logarithmic Schrödinger Equation, Fractal and Fractional, Volume 8 (2024) no. 7, p. 391 | DOI:10.3390/fractalfract8070391
  • Lifeng Guo; Yuan Li; Sihua Liang Solutions for a Logarithmic Fractional Schrödinger-Poisson System with Asymptotic Potential, Fractal and Fractional, Volume 8 (2024) no. 9, p. 528 | DOI:10.3390/fractalfract8090528
  • Hai Ning Fan; Bin Lin Zhang Fractional Schrödinger equations with logarithmic and critical nonlinearities, Acta Mathematica Sinica. English Series, Volume 39 (2023) no. 2, pp. 285-325 | DOI:10.1007/s10114-023-1372-y | Zbl:1512.35615
  • Pengtao Li; Rui Hu; Zhichun Zhai Strengthened fractional Sobolev type inequalities in Besov spaces, Potential Analysis, Volume 59 (2023) no. 4, pp. 2105-2121 | DOI:10.1007/s11118-022-10030-z | Zbl:1541.46016
  • Qi Li; Shuangjie Peng; Wei Shuai On fractional logarithmic Schrödinger equations, Advanced Nonlinear Studies, Volume 22 (2022), pp. 41-66 | DOI:10.1515/ans-2022-0002 | Zbl:1485.35396
  • Lifeng Guo; Yan Sun; Guannan Shi Ground states for fractional nonlocal equations with logarithmic nonlinearity, Opuscula Mathematica, Volume 42 (2022) no. 2, pp. 157-178 | DOI:10.7494/opmath.2022.42.2.157 | Zbl:1485.35202
  • Mingqi Xiang; Binlin Zhang Combined effects of logarithmic and critical nonlinearities in fractional Laplacian problems, Advances in Differential Equations, Volume 26 (2021) no. 7-8, pp. 363-396 | Zbl:1480.35400
  • Fuliang Wang; Hu Die; Mingqi Xiang Combined effects of logarithmic and superlinear nonlinearities in fractional Laplacian systems, Analysis and Mathematical Physics, Volume 11 (2021) no. 1, p. 34 (Id/No 9) | DOI:10.1007/s13324-020-00441-9 | Zbl:1456.35225
  • Wenjun Liu; Jiangyong Yu; Gang Li Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity, Discrete and Continuous Dynamical Systems. Series S, Volume 14 (2021) no. 12, pp. 4337-4366 | DOI:10.3934/dcdss.2021121 | Zbl:1480.35395
  • Siyuan He; Xiaochun Liu Multiple solutions for a class of fractional logarithmic Schrödinger equations, SN Partial Differential Equations and Applications, Volume 2 (2021) no. 6, p. 30 (Id/No 70) | DOI:10.1007/s42985-021-00124-5 | Zbl:1481.35195
  • Haining Fan; Zhaosheng Feng; Xingjie Yan Positive solutions for the fractional Schrödinger equations with logarithmic and critical non-linearities, Transactions of the London Mathematical Society, Volume 8 (2021) no. 1, pp. 206-242 | DOI:10.1112/tlm3.12034 | Zbl:1537.35373
  • Mingqi Xiang; Die Hu; Di Yang Least energy solutions for fractional Kirchhoff problems with logarithmic nonlinearity, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 198 (2020), p. 19 (Id/No 111899) | DOI:10.1016/j.na.2020.111899 | Zbl:1440.35194
  • Christos P. Kitsos; Thomas L. Toulias Inequalities in statistics and information measures, Differential and integral inequalities, Cham: Springer, 2019, pp. 481-508 | DOI:10.1007/978-3-030-27407-8_16 | Zbl:1443.60025
  • Hongwei Zhang; Qingying Hu Existence of the global solution for fractional logarithmic Schrödinger equation, Computers Mathematics with Applications, Volume 75 (2018) no. 1, pp. 161-169 | DOI:10.1016/j.camwa.2017.09.010 | Zbl:1418.35374
  • Hoai-Minh Nguyen; Marco Squassina Logarithmic Sobolev inequality revisited, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 355 (2017) no. 4, pp. 447-451 | DOI:10.1016/j.crma.2017.02.009 | Zbl:1373.46027
  • Qingying Hu; Hongwei Zhang Initial boundary value problem for generalized logarithmic improved Boussinesq equation, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 10, pp. 3687-3697 | DOI:10.1002/mma.4255 | Zbl:1370.35201
  • Alex H. Ardila Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 155 (2017), pp. 52-64 | DOI:10.1016/j.na.2017.01.006 | Zbl:1368.35242
  • Qingying Hu; Hongwei Zhang; Gongwei Liu Global existence and exponential growth of solution for the logarithmic Boussinesq-type equation, Journal of Mathematical Analysis and Applications, Volume 436 (2016) no. 2, pp. 990-1001 | DOI:10.1016/j.jmaa.2015.11.082 | Zbl:1336.35248
  • Thomas L. Toulias; Christos P. Kitsos Generalizations of entropy and information measures, Computation, cryptography, and network security, Cham: Springer, 2015, pp. 493-524 | DOI:10.1007/978-3-319-18275-9_22 | Zbl:1368.94061
  • Thomas L. Toulias Generalized information for the γ-order normal distribution, Journal of Probability and Statistics, Volume 2015 (2015), p. 9 (Id/No 385285) | DOI:10.1155/2015/385285 | Zbl:1426.62017
  • Pietro d'Avenia; Marco Squassina; Marianna Zenari Fractional logarithmic Schrödinger equations, Mathematical Methods in the Applied Sciences, Volume 38 (2015) no. 18, pp. 5207-5216 | DOI:10.1002/mma.3449 | Zbl:1334.35408
  • Christos P. Kitsos; Thomas L. Toulias Inequalities for the Fisher's information measures, Handbook of functional equations. Functional inequalities, New York, NY: Springer, 2014, pp. 281-313 | DOI:10.1007/978-1-4939-1246-9_13 | Zbl:1361.94029
  • Yasunori Maekawa; Hideyuki Miura Upper bounds for fundamental solutions to non-local diffusion equations with divergence free drift, Journal of Functional Analysis, Volume 264 (2013) no. 10, pp. 2245-2268 | DOI:10.1016/j.jfa.2013.02.011 | Zbl:1278.35262
  • Hichem Hajaiej; Xinwei Yu; Zhichun Zhai Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz norms, Journal of Mathematical Analysis and Applications, Volume 396 (2012) no. 2, pp. 569-577 | DOI:10.1016/j.jmaa.2012.06.054 | Zbl:1254.26010
  • J. Xiao; Zh. Zhai Fractional Sobolev, Moser-Trudinger, Morrey-Sobolev inequalities under Lorentz norms, Journal of Mathematical Sciences (New York), Volume 166 (2010) no. 3, pp. 357-376 | DOI:10.1007/s10958-010-9872-6 | Zbl:1307.46027
  • Christos P. Kitsos; Nikolaos K. Tavoularis Logarithmic Sobolev Inequalities for Information Measures, IEEE Transactions on Information Theory, Volume 55 (2009) no. 6, p. 2554 | DOI:10.1109/tit.2009.2018179
  • Ivan Gentil; Cyril Imbert Logarithmic Sobolev inequalities: Regularizing effect of Lévy operators and asymptotic convergence in the Lévy–Fokker–Planck equation, Stochastics, Volume 81 (2009) no. 3-4, p. 401 | DOI:10.1080/17442500903080306

Cité par 33 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: