Comptes Rendus
Ordinary Differential Equations/Automation (theoretical)
Persistence in ecological models of competition for a single resource
Comptes Rendus. Mathématique, Volume 340 (2005) no. 3, pp. 199-204.

We show how the consideration of an intra-specific dependency in the population growth functions can explain a stable persistence of several species in competition for a single resource. This result is applied to a model of single-nutrient competition in the chemostat.

Nous montrons comment la considération d'un terme de compétition intra-specifique dans les lois de croissance permet d'expliquer la persistance stable de plusieurs espèces en compétition pour une même ressource. Ce résultat est appliqué à un modèle de compétition pour un seul substrat dans le chemostat.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.12.021

Claude Lobry 1; Frédéric Mazenc 1; Alain Rapaport 1

1 Projet INRA-INRIA ‘MERE’, UMR analyse des systèmes et biométrie, 2, place Viala, 34060 Montpellier, France
@article{CRMATH_2005__340_3_199_0,
     author = {Claude Lobry and Fr\'ed\'eric Mazenc and Alain Rapaport},
     title = {Persistence in ecological models of competition for a single resource},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {199--204},
     publisher = {Elsevier},
     volume = {340},
     number = {3},
     year = {2005},
     doi = {10.1016/j.crma.2004.12.021},
     language = {en},
}
TY  - JOUR
AU  - Claude Lobry
AU  - Frédéric Mazenc
AU  - Alain Rapaport
TI  - Persistence in ecological models of competition for a single resource
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 199
EP  - 204
VL  - 340
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2004.12.021
LA  - en
ID  - CRMATH_2005__340_3_199_0
ER  - 
%0 Journal Article
%A Claude Lobry
%A Frédéric Mazenc
%A Alain Rapaport
%T Persistence in ecological models of competition for a single resource
%J Comptes Rendus. Mathématique
%D 2005
%P 199-204
%V 340
%N 3
%I Elsevier
%R 10.1016/j.crma.2004.12.021
%G en
%F CRMATH_2005__340_3_199_0
Claude Lobry; Frédéric Mazenc; Alain Rapaport. Persistence in ecological models of competition for a single resource. Comptes Rendus. Mathématique, Volume 340 (2005) no. 3, pp. 199-204. doi : 10.1016/j.crma.2004.12.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.12.021/

[1] D. Angeli; E. Sontag Monotone Control Systems, IEEE Trans. Automat. Control, Volume 48 (2003), pp. 1684-1698

[2] D. Angeli; E. Sontag Optimal Control, Stabilization and Nonsmooth Analysis (M.S. de Queiroz; M. Malisoff; P. Wolenski, eds.), Lecture Notes in Control and Inform. Sci., Springer, 2004, pp. 135-154

[3] G.J. Butler; S.B. Hsu; P. Waltman A mathematical model of the chemostat with periodic washout rate, SIAM J. Appl. Math., Volume 45 (1985), pp. 435-449

[4] P. De Leenheer; D. Angeli; E.D. Sontag A feedback perspective for chemostat models with crowding effects, Lecture Notes in Control and Inform. Sci., vol. 294, 2003, pp. 167-174

[5] P. De Leenheer; H.L. Smith Feedback control for the chemostat, J. Math. Biol., Volume 46 (2003), pp. 48-70

[6] F. Grognard, F. Mazenc, A. Rapaport, 2005, in preparation

[7] J.P. Grover Resource Competition, Chapman & Hall, New York, 1997

[8] J.K. Hale; A.S. Somolinas Competition for fluctuating nutrient, J. Math. Biol., Volume 18 (1983), pp. 255-280

[9] S. Hansen; S. Hubbell Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes, Science, Volume 207 (1980) no. 28, pp. 1491-1493

[10] G. Hardin The competition exclusion principle, Science, Volume 131 (1960), pp. 1292-1298

[11] S.B. Hsu A competition model for a seasonally fluctuating nutrient, J. Math. Biol., Volume 9 (1980), pp. 115-132

[12] S.B. Hsu; K.S. Cheng; S.P. Hubbell Exploitative competition of micro-organisms for two complementary nutrients in continuous culture, SIAM J. Appl. Math., Volume 41 (1981), pp. 422-444

[13] J.A. Leon; D.B. Tumpson Competition between two species for two complementary or substituable resources, J. Theor. Biol., Volume 50 (1975), pp. 185-201

[14] C. Lobry, R. Arditi, J. Harmand, J.J. Godon, A. Sciandra, 2005, in preparation

[15] C. Lobry; T. Sari; S. Touhami Slow and fast feed back in control systems, J. Biol. Syst., Volume 7 (1999) no. 3, pp. 307-332

[16] J. Metz; O. Dieckmann The Dynamics of Physilogically Structured Populations, Lecture Notes in Biomath., vol. 68, Springer, Berlin Germany, 1986

[17] N.S. Panikov Microbial Growth Kinetics, Chapman and Hall, New York, 1995

[18] H.L. Smith; P. Waltman The Theory of the Chemostat, Cambridge University Press, 1995

[19] G. Stephanopoulos; A.G. Fredrickson; R. Aris The growth of competing microbial populations in CSTR with periodically varying inputs, Amer. Inst. Chem. Engrg. J., Volume 25 (1979), pp. 863-872

Cited by Sources:

Comments - Policy