We show how the consideration of an intra-specific dependency in the population growth functions can explain a stable persistence of several species in competition for a single resource. This result is applied to a model of single-nutrient competition in the chemostat.
Nous montrons comment la considération d'un terme de compétition intra-specifique dans les lois de croissance permet d'expliquer la persistance stable de plusieurs espèces en compétition pour une même ressource. Ce résultat est appliqué à un modèle de compétition pour un seul substrat dans le chemostat.
Accepted:
Published online:
Claude Lobry 1; Frédéric Mazenc 1; Alain Rapaport 1
@article{CRMATH_2005__340_3_199_0, author = {Claude Lobry and Fr\'ed\'eric Mazenc and Alain Rapaport}, title = {Persistence in ecological models of competition for a single resource}, journal = {Comptes Rendus. Math\'ematique}, pages = {199--204}, publisher = {Elsevier}, volume = {340}, number = {3}, year = {2005}, doi = {10.1016/j.crma.2004.12.021}, language = {en}, }
TY - JOUR AU - Claude Lobry AU - Frédéric Mazenc AU - Alain Rapaport TI - Persistence in ecological models of competition for a single resource JO - Comptes Rendus. Mathématique PY - 2005 SP - 199 EP - 204 VL - 340 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2004.12.021 LA - en ID - CRMATH_2005__340_3_199_0 ER -
Claude Lobry; Frédéric Mazenc; Alain Rapaport. Persistence in ecological models of competition for a single resource. Comptes Rendus. Mathématique, Volume 340 (2005) no. 3, pp. 199-204. doi : 10.1016/j.crma.2004.12.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.12.021/
[1] Monotone Control Systems, IEEE Trans. Automat. Control, Volume 48 (2003), pp. 1684-1698
[2] Optimal Control, Stabilization and Nonsmooth Analysis (M.S. de Queiroz; M. Malisoff; P. Wolenski, eds.), Lecture Notes in Control and Inform. Sci., Springer, 2004, pp. 135-154
[3] A mathematical model of the chemostat with periodic washout rate, SIAM J. Appl. Math., Volume 45 (1985), pp. 435-449
[4] A feedback perspective for chemostat models with crowding effects, Lecture Notes in Control and Inform. Sci., vol. 294, 2003, pp. 167-174
[5] Feedback control for the chemostat, J. Math. Biol., Volume 46 (2003), pp. 48-70
[6] F. Grognard, F. Mazenc, A. Rapaport, 2005, in preparation
[7] Resource Competition, Chapman & Hall, New York, 1997
[8] Competition for fluctuating nutrient, J. Math. Biol., Volume 18 (1983), pp. 255-280
[9] Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes, Science, Volume 207 (1980) no. 28, pp. 1491-1493
[10] The competition exclusion principle, Science, Volume 131 (1960), pp. 1292-1298
[11] A competition model for a seasonally fluctuating nutrient, J. Math. Biol., Volume 9 (1980), pp. 115-132
[12] Exploitative competition of micro-organisms for two complementary nutrients in continuous culture, SIAM J. Appl. Math., Volume 41 (1981), pp. 422-444
[13] Competition between two species for two complementary or substituable resources, J. Theor. Biol., Volume 50 (1975), pp. 185-201
[14] C. Lobry, R. Arditi, J. Harmand, J.J. Godon, A. Sciandra, 2005, in preparation
[15] Slow and fast feed back in control systems, J. Biol. Syst., Volume 7 (1999) no. 3, pp. 307-332
[16] The Dynamics of Physilogically Structured Populations, Lecture Notes in Biomath., vol. 68, Springer, Berlin Germany, 1986
[17] Microbial Growth Kinetics, Chapman and Hall, New York, 1995
[18] The Theory of the Chemostat, Cambridge University Press, 1995
[19] The growth of competing microbial populations in CSTR with periodically varying inputs, Amer. Inst. Chem. Engrg. J., Volume 25 (1979), pp. 863-872
Cited by Sources:
Comments - Policy