This Note focuses on an estimator of the conditional mode of a scalar response Y given a functional random variable X. We start by building a kernel estimator of the conditional density of Y given X; the conditional mode is defined as the value which maximizes this conditional density. We establish the almost complete convergence for this estimate under α-mixing assumption.
On établit la convergence presque-complète de l'estimateur du mode de la distribution d'une variable réelle Y conditionnée par une variable fonctionnelle X. Le mode conditionnel est estimé par la valeur qui maximise l'estimateur à noyau de la densité conditionnelle de Y sachant X. Des résultats asymptotiques concernant cet estimateur sont établis sous l'hypothèse α-mélangeante, rendant nos résultats opérationnels en prédiction de séries chronologiques.
Accepted:
Published online:
Frédéric Ferraty 1; Ali Laksaci 2; Philippe Vieu 1
@article{CRMATH_2005__340_5_389_0, author = {Fr\'ed\'eric Ferraty and Ali Laksaci and Philippe Vieu}, title = {Functional time series prediction via conditional mode estimation}, journal = {Comptes Rendus. Math\'ematique}, pages = {389--392}, publisher = {Elsevier}, volume = {340}, number = {5}, year = {2005}, doi = {10.1016/j.crma.2005.01.016}, language = {en}, }
TY - JOUR AU - Frédéric Ferraty AU - Ali Laksaci AU - Philippe Vieu TI - Functional time series prediction via conditional mode estimation JO - Comptes Rendus. Mathématique PY - 2005 SP - 389 EP - 392 VL - 340 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2005.01.016 LA - en ID - CRMATH_2005__340_5_389_0 ER -
Frédéric Ferraty; Ali Laksaci; Philippe Vieu. Functional time series prediction via conditional mode estimation. Comptes Rendus. Mathématique, Volume 340 (2005) no. 5, pp. 389-392. doi : 10.1016/j.crma.2005.01.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.01.016/
[1] Normalité asymptotique d'estimateurs convergents du mode conditionnel, Rev. Canad. Statist., Volume 26 (1998), pp. 365-380
[2] A note on prediction via conditional mode estimation, J. Statist. Plann. Infer., Volume 15 (1987), pp. 227-236
[3] Functional nonparametric model for time series: a fractal approach to dimension reduction, TEST, Volume 11 (2002) no. 2, pp. 317-344
[4] Functional nonparametric statistics: a double infinite dimensional framework (M. Akritas; D. Politis, eds.), Recent Advances and Trends in Nonparametric Statistics, Elsevier, Amsterdam, 2003
[5] F. Ferraty, A. Laksaci, P. Vieu, Estimating some characteristics of the conditional distribution in nonparametric functional models, Statist. Infer. Stoch. Proc., (2004), in press
[6] Nonparametric estimation of the mode of a distribution of random curves, J. Roy. Statist. Soc. Ser. B, Volume 60 (1998), pp. 681-691
[7] Propriétés de convergence de l'estimateur noyau de la densité conditionnelle, Rev. Roum. Math. Pures Appl., Volume 41 (1996), pp. 535-566
[8] Asymptotic normality of kernel estimators of the conditional mode under strong mixing hypothesis, J. Nonparametric Statist., Volume 11 (1999) no. 4, pp. 413-442
[9] Conditional probability density and regression estimators (P.R. Krishnaiah, ed.), Multivariate Analysis II, Academic Press, New York, 1969
[10] Théorie asymptotique des processus faiblement dépendants, Mathématiques & Applications, vol. 31, Springer–SMAI, 1999
Cited by Sources:
Comments - Policy