Comptes Rendus
Statistics/Probability Theory
Functional time series prediction via conditional mode estimation
Comptes Rendus. Mathématique, Volume 340 (2005) no. 5, pp. 389-392.

This Note focuses on an estimator of the conditional mode of a scalar response Y given a functional random variable X. We start by building a kernel estimator of the conditional density of Y given X; the conditional mode is defined as the value which maximizes this conditional density. We establish the almost complete convergence for this estimate under α-mixing assumption.

On établit la convergence presque-complète de l'estimateur du mode de la distribution d'une variable réelle Y conditionnée par une variable fonctionnelle X. Le mode conditionnel est estimé par la valeur qui maximise l'estimateur à noyau de la densité conditionnelle de Y sachant X. Des résultats asymptotiques concernant cet estimateur sont établis sous l'hypothèse α-mélangeante, rendant nos résultats opérationnels en prédiction de séries chronologiques.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2005.01.016

Frédéric Ferraty 1; Ali Laksaci 2; Philippe Vieu 1

1 Laboratoire de statistique et probabilités, Université Paul Sabatier, 31062 Toulouse, France
2 Université Djillali Liabes, Sidi Bel Abbes, Algeria
@article{CRMATH_2005__340_5_389_0,
     author = {Fr\'ed\'eric Ferraty and Ali Laksaci and Philippe Vieu},
     title = {Functional time series prediction via conditional mode estimation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {389--392},
     publisher = {Elsevier},
     volume = {340},
     number = {5},
     year = {2005},
     doi = {10.1016/j.crma.2005.01.016},
     language = {en},
}
TY  - JOUR
AU  - Frédéric Ferraty
AU  - Ali Laksaci
AU  - Philippe Vieu
TI  - Functional time series prediction via conditional mode estimation
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 389
EP  - 392
VL  - 340
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2005.01.016
LA  - en
ID  - CRMATH_2005__340_5_389_0
ER  - 
%0 Journal Article
%A Frédéric Ferraty
%A Ali Laksaci
%A Philippe Vieu
%T Functional time series prediction via conditional mode estimation
%J Comptes Rendus. Mathématique
%D 2005
%P 389-392
%V 340
%N 5
%I Elsevier
%R 10.1016/j.crma.2005.01.016
%G en
%F CRMATH_2005__340_5_389_0
Frédéric Ferraty; Ali Laksaci; Philippe Vieu. Functional time series prediction via conditional mode estimation. Comptes Rendus. Mathématique, Volume 340 (2005) no. 5, pp. 389-392. doi : 10.1016/j.crma.2005.01.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.01.016/

[1] A. Berlinet; A. Gannoun; E. Matzner-Lober Normalité asymptotique d'estimateurs convergents du mode conditionnel, Rev. Canad. Statist., Volume 26 (1998), pp. 365-380

[2] G. Collomb; W. Härdle; S. Hassani A note on prediction via conditional mode estimation, J. Statist. Plann. Infer., Volume 15 (1987), pp. 227-236

[3] F. Ferraty; A. Goia; P. Vieu Functional nonparametric model for time series: a fractal approach to dimension reduction, TEST, Volume 11 (2002) no. 2, pp. 317-344

[4] F. Ferraty; P. Vieu Functional nonparametric statistics: a double infinite dimensional framework (M. Akritas; D. Politis, eds.), Recent Advances and Trends in Nonparametric Statistics, Elsevier, Amsterdam, 2003

[5] F. Ferraty, A. Laksaci, P. Vieu, Estimating some characteristics of the conditional distribution in nonparametric functional models, Statist. Infer. Stoch. Proc., (2004), in press

[6] T. Gasser; P. Hall; B. Presnell Nonparametric estimation of the mode of a distribution of random curves, J. Roy. Statist. Soc. Ser. B, Volume 60 (1998), pp. 681-691

[7] S. Hassani; E. Youndjé Propriétés de convergence de l'estimateur noyau de la densité conditionnelle, Rev. Roum. Math. Pures Appl., Volume 41 (1996), pp. 535-566

[8] D. Louani; E. Ould-Saïd Asymptotic normality of kernel estimators of the conditional mode under strong mixing hypothesis, J. Nonparametric Statist., Volume 11 (1999) no. 4, pp. 413-442

[9] M. Rosenblatt Conditional probability density and regression estimators (P.R. Krishnaiah, ed.), Multivariate Analysis II, Academic Press, New York, 1969

[10] E. Rio Théorie asymptotique des processus faiblement dépendants, Mathématiques & Applications, vol. 31, Springer–SMAI, 1999

Cited by Sources:

Comments - Policy