[Tourbillons dans un condensat de Bose–Einstein 2d en rotation]
We investigate the physical model for a two dimensional rotating Bose–Einstein condensate. We minimize a Gross–Pitaevskii functional defined in
Nous étudions le modèle physique pour un condensat de Bose–Einstein bidimensionnel en rotation. Nous minimisons une fonctionnelle de Gross–Pitaevskii définie sur
Publié le :
Radu Ignat 1 ; Vincent Millot 1
@article{CRMATH_2005__340_8_571_0, author = {Radu Ignat and Vincent Millot}, title = {Vortices in a 2d rotating {Bose{\textendash}Einstein} condensate}, journal = {Comptes Rendus. Math\'ematique}, pages = {571--576}, publisher = {Elsevier}, volume = {340}, number = {8}, year = {2005}, doi = {10.1016/j.crma.2005.03.015}, language = {en}, }
Radu Ignat; Vincent Millot. Vortices in a 2d rotating Bose–Einstein condensate. Comptes Rendus. Mathématique, Volume 340 (2005) no. 8, pp. 571-576. doi : 10.1016/j.crma.2005.03.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.03.015/
[1] Observation of vortex latices in Bose–Einstein condensates, Science, Volume 292 (2001), pp. 476-479
[2] A. Aftalion, S. Alama, L. Bronsard, Giant vortex and the breakdown of strong pinning in a rotating Bose–Einstein condensate, Arch. Rational Mech. Anal., in press
[3] Vortices in a rotating Bose–Einstein condensate: critical angular velocities and energy diagrams in the Thomas–Fermi regime, Phys. Rev. A, Volume 64 (2001), p. 063603
[4] Topological methods for the Ginzburg–Landau equations, J. Math. Pures Appl., Volume 77 (1998), pp. 1-49
[5] Asymptotic behavior of minimizers for the Ginzburg–Landau functional with weight II, Arch. Rational Mech. Anal., Volume 142 (1998), pp. 75-98
[6] Ginzburg–Landau vortices, Progr. Nonlinear Differential Equations Appl., vol. 13, Birkhäuser, 1993
[7] Bose–Einstein condensates with vortices in rotating traps, Eur. Phys. J. D, Volume 7 (1999), pp. 399-412
[8] R. Ignat, V. Millot, The critical velocity for vortex existence in a two dimensional rotating Bose–Einstein condensate, in press
[9] R. Ignat, V. Millot, Energy expansion and vortex location for a two dimensional rotating Bose–Einstein condensate, in press
[10] Ginzburg–Landau type energy with discontinuous constraint, J. Anal. Math., Volume 77 (1999), pp. 1-26
[11] Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett., Volume 84 (2000), p. 806
[12] Global minimizers for the Ginzburg–Landau functional below the first critical magnetic field, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 17 (2000), pp. 119-145
[13] On a model of rotating superfluids, ESAIM: Control Optim. Calc. Var., Volume 6 (2001), pp. 201-238
Cité par Sources :
Commentaires - Politique