Comptes Rendus
Algebra
The structure of certain rigid tensor categories
Comptes Rendus. Mathématique, Volume 340 (2005) no. 8, pp. 557-562.

We consider rigid tensor categories over a field of characteristic zero in which some exterior power of each object is zero.

Nous considérons des catégories tensorielles rigides sur un corps de caractéristique nulle dans lesquelles une puissance extérieure convenable de chaque objet est nulle.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2005.03.018

Peter O'Sullivan 1

1 School of Mathematics and Statistics F07, University of Sydney NSW 2006, Australia
@article{CRMATH_2005__340_8_557_0,
     author = {Peter O'Sullivan},
     title = {The structure of certain rigid tensor categories},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {557--562},
     publisher = {Elsevier},
     volume = {340},
     number = {8},
     year = {2005},
     doi = {10.1016/j.crma.2005.03.018},
     language = {en},
}
TY  - JOUR
AU  - Peter O'Sullivan
TI  - The structure of certain rigid tensor categories
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 557
EP  - 562
VL  - 340
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2005.03.018
LA  - en
ID  - CRMATH_2005__340_8_557_0
ER  - 
%0 Journal Article
%A Peter O'Sullivan
%T The structure of certain rigid tensor categories
%J Comptes Rendus. Mathématique
%D 2005
%P 557-562
%V 340
%N 8
%I Elsevier
%R 10.1016/j.crma.2005.03.018
%G en
%F CRMATH_2005__340_8_557_0
Peter O'Sullivan. The structure of certain rigid tensor categories. Comptes Rendus. Mathématique, Volume 340 (2005) no. 8, pp. 557-562. doi : 10.1016/j.crma.2005.03.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.03.018/

[1] Y. André; B. Kahn Nilpotence, radicaux et structures monoïdales, Rend. Sem. Mat. Univ. Padova, Volume 108 (2002), pp. 107-291

[2] M. Artin; A. Grothendieck; J.-L. Verdier Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math., vols. 269, 270 and 305, Springer-Verlag, 1972–1973

[3] P. Deligne Catégories tannakiennes, The Grothendieck Festschrift, vol. 2, Progr. Math., vol. 87, Birkhäuser, 1990, pp. 111-198

[4] P. Deligne; J. Milne Tannakian categories, Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Math., vol. 900, Springer-Verlag, Berlin, 1982, pp. 101-228

[5] W. Fulton; J. Harris Representation Theory, Graduate Texts in Math., vol. 129, Springer-Verlag, Berlin, 1991

[6] D. Luna Slices étales, Bull. Soc. Mat. France Mémoire, Volume 33 (1973), pp. 81-105

[7] A.R. Magid Equivariant completions of rings with reductive group action, J. Pure Appl. Algebra, Volume 49 (1987), pp. 173-185

[8] V.L. Popov; E.B. Vinberg Invariant theory, Algebraic Geometry IV, Encycl. Math. Sci., vol. 55, Springer-Verlag, 1994, pp. 123-284

[9] O. Zariski; P. Samuel Commutative Algebra, vol. 1, Van Nostrand, Princeton, NJ, 1958

Cited by Sources:

Comments - Policy