We consider rigid tensor categories over a field of characteristic zero in which some exterior power of each object is zero.
Nous considérons des catégories tensorielles rigides sur un corps de caractéristique nulle dans lesquelles une puissance extérieure convenable de chaque objet est nulle.
Accepted:
Published online:
Peter O'Sullivan 1
@article{CRMATH_2005__340_8_557_0, author = {Peter O'Sullivan}, title = {The structure of certain rigid tensor categories}, journal = {Comptes Rendus. Math\'ematique}, pages = {557--562}, publisher = {Elsevier}, volume = {340}, number = {8}, year = {2005}, doi = {10.1016/j.crma.2005.03.018}, language = {en}, }
Peter O'Sullivan. The structure of certain rigid tensor categories. Comptes Rendus. Mathématique, Volume 340 (2005) no. 8, pp. 557-562. doi : 10.1016/j.crma.2005.03.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.03.018/
[1] Nilpotence, radicaux et structures monoïdales, Rend. Sem. Mat. Univ. Padova, Volume 108 (2002), pp. 107-291
[2] Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math., vols. 269, 270 and 305, Springer-Verlag, 1972–1973
[3] Catégories tannakiennes, The Grothendieck Festschrift, vol. 2, Progr. Math., vol. 87, Birkhäuser, 1990, pp. 111-198
[4] Tannakian categories, Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Math., vol. 900, Springer-Verlag, Berlin, 1982, pp. 101-228
[5] Representation Theory, Graduate Texts in Math., vol. 129, Springer-Verlag, Berlin, 1991
[6] Slices étales, Bull. Soc. Mat. France Mémoire, Volume 33 (1973), pp. 81-105
[7] Equivariant completions of rings with reductive group action, J. Pure Appl. Algebra, Volume 49 (1987), pp. 173-185
[8] Invariant theory, Algebraic Geometry IV, Encycl. Math. Sci., vol. 55, Springer-Verlag, 1994, pp. 123-284
[9] Commutative Algebra, vol. 1, Van Nostrand, Princeton, NJ, 1958
Cited by Sources:
Comments - Policy