[La structure de certaines catégories tensorielles rigides]
Nous considérons des catégories tensorielles rigides sur un corps de caractéristique nulle dans lesquelles une puissance extérieure convenable de chaque objet est nulle.
We consider rigid tensor categories over a field of characteristic zero in which some exterior power of each object is zero.
Accepté le :
Publié le :
Peter O'Sullivan 1
@article{CRMATH_2005__340_8_557_0, author = {Peter O'Sullivan}, title = {The structure of certain rigid tensor categories}, journal = {Comptes Rendus. Math\'ematique}, pages = {557--562}, publisher = {Elsevier}, volume = {340}, number = {8}, year = {2005}, doi = {10.1016/j.crma.2005.03.018}, language = {en}, }
Peter O'Sullivan. The structure of certain rigid tensor categories. Comptes Rendus. Mathématique, Volume 340 (2005) no. 8, pp. 557-562. doi : 10.1016/j.crma.2005.03.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.03.018/
[1] Nilpotence, radicaux et structures monoïdales, Rend. Sem. Mat. Univ. Padova, Volume 108 (2002), pp. 107-291
[2] Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math., vols. 269, 270 and 305, Springer-Verlag, 1972–1973
[3] Catégories tannakiennes, The Grothendieck Festschrift, vol. 2, Progr. Math., vol. 87, Birkhäuser, 1990, pp. 111-198
[4] Tannakian categories, Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Math., vol. 900, Springer-Verlag, Berlin, 1982, pp. 101-228
[5] Representation Theory, Graduate Texts in Math., vol. 129, Springer-Verlag, Berlin, 1991
[6] Slices étales, Bull. Soc. Mat. France Mémoire, Volume 33 (1973), pp. 81-105
[7] Equivariant completions of rings with reductive group action, J. Pure Appl. Algebra, Volume 49 (1987), pp. 173-185
[8] Invariant theory, Algebraic Geometry IV, Encycl. Math. Sci., vol. 55, Springer-Verlag, 1994, pp. 123-284
[9] Commutative Algebra, vol. 1, Van Nostrand, Princeton, NJ, 1958
- The Grothendieck Ring of Varieties, Motivic Integration, Volume 325 (2018), p. 55 | DOI:10.1007/978-1-4939-7887-8_2
- Intermediate extension of Chow motives of abelian type, Advances in Mathematics, Volume 305 (2017), pp. 515-600 | DOI:10.1016/j.aim.2016.09.032 | Zbl:1360.14078
- The Fourier transform for certain hyperkähler fourfolds, Memoirs of the American Mathematical Society, 1139, Providence, RI: American Mathematical Society (AMS), 2016 | DOI:10.1090/memo/1139 | Zbl:1386.14025
- On the interior motive of certain Shimura varieties: the case of Picard surfaces, Manuscripta Mathematica, Volume 148 (2015) no. 3-4, pp. 351-377 | DOI:10.1007/s00229-015-0747-5 | Zbl:1349.14106
- Algebraic cycles on an abelian variety, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2011 (2011) no. 654, p. 1 | DOI:10.1515/crelle.2011.025
- The generalised Jacobson-Morosov theorem., Memoirs of the American Mathematical Society, 973, Providence, RI: American Mathematical Society (AMS), 2010 | DOI:10.1090/s0065-9266-10-00603-4 | Zbl:1228.20037
Cité par 6 documents. Sources : Crossref, zbMATH
Commentaires - Politique