Let μ be a positive locally finite Borel measure on . A natural way to construct multifractal wavelet series is to set , where , . Under suitable conditions, the function inherits the multifractal properties of μ. The transposition of multifractal properties works with most classes of statistically self-similar multifractal measures. Several perturbations of the wavelet coefficients and their impact on the multifractal nature of are studied. As an application, the multifractal spectrum of the celebrated -cascades introduced by Arnéodo et al. is obtained.
Étant donnée une mesure borélienne positive μ définie sur , il est naturel de lui associer une série d'ondelettes en prescrivant ses coefficients d'ondelettes de la façon suivante : on pose , où , . Nous montrons comment les propriétés multifractales de la mesure μ peuvent se transmettre à la série d'ondelettes . Nous étudions la stabilité de la construction après perturbation des coefficients d'ondelettes. Ce travail permet de calculer le spectre multifractal des cascades aléatoires d'ondelettes d'Arnéodo et al.
Accepted:
Published online:
Julien Barral 1; Stéphane Seuret 1
@article{CRMATH_2005__341_6_353_0, author = {Julien Barral and St\'ephane Seuret}, title = {Wavelet series built using multifractal measures}, journal = {Comptes Rendus. Math\'ematique}, pages = {353--356}, publisher = {Elsevier}, volume = {341}, number = {6}, year = {2005}, doi = {10.1016/j.crma.2005.06.029}, language = {en}, }
Julien Barral; Stéphane Seuret. Wavelet series built using multifractal measures. Comptes Rendus. Mathématique, Volume 341 (2005) no. 6, pp. 353-356. doi : 10.1016/j.crma.2005.06.029. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.06.029/
[1] Random cascades on wavelet dyadic trees, J. Math. Phys., Volume 39 (1998) no. 8, pp. 4142-4264
[2] J. Barral, S. Seuret, From multifractal measures to multifractal wavelet series, J. Fourier Anal. Appl. (2005) in press
[3] J. Barral, S. Seuret, Inside singularity sets of random Gibbs measures, J. Stat. Phys. (2005), in press; J. Barral, S. Seuret, Renewal of singularity sets of statistically self-similar measures, Preprint, 2004
[4] On the multifractal analysis of measures, J. Statist. Phys., Volume 66 (1992) no. 3–4, pp. 775-790
[5] Limsup deviations on trees, Anal. Theory Appl., Volume 20 (2004), pp. 113-148
[6] On lacunary wavelet series, Ann. Appl. Probab., Volume 10 (2000) no. 1, pp. 313-329
[7] Wavelet techniques in multifractal analysis, Proc. Symp. Pure Math., Volume 72 (2004) no. 2
[8] Sur certaines martingales de Benoît Mandelbrot, Adv. Math., Volume 22 (1976), pp. 131-145
[9] Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier, J. Fluid. Mech., Volume 62 (1974), pp. 331-358
[10] Ondelettes et Opérateurs, Hermann, 1990
[11] S. Seuret, Analyse de régularité locale. quelques applications à l'analyse multifractale, Thèse, Ecole Polytechnique, 2003
Cited by Sources:
Comments - Policy