In this Note we study solutions, possibly unbounded and sign-changing, of the equation on unbounded domains of with and . We prove some Liouville-type results and a classification theorem for solutions belonging to one of the following classes: stable solutions, finite Morse index solutions and solutions which are stable outside a compact set. We also extend, to smooth coercive epigraphs, the well-known results of Gidas and Spruck concerning non-negative solutions of the considered equation.
Cette Note porte sur l'étude des solutions, éventuellement non-bornées et de signe quelconque, de l'équation dans des domaines non-bornés de avec et . Nous démontrons des résultats de type Liouville ainsi que des théorèmes de classification pour les solutions régulières appartenant à une des classes suivantes : solutions stables, solutions d'indice de Morse fini et solutions stables à l'extérieur d'un compact. Nous étendons aussi, au cas d'un épigraphe coercif régulier, les célèbres résultats de Gidas et Spruck concernant les solutions positives de l'équation considérée.
Accepted:
Published online:
Alberto Farina 1
@article{CRMATH_2005__341_7_415_0, author = {Alberto Farina}, title = {Liouville-type results for solutions of $ -\mathrm{\Delta }u={|u|}^{p-1}u$ on unbounded domains of $ {\mathbb{R}}^{N}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {415--418}, publisher = {Elsevier}, volume = {341}, number = {7}, year = {2005}, doi = {10.1016/j.crma.2005.07.006}, language = {en}, }
TY - JOUR AU - Alberto Farina TI - Liouville-type results for solutions of $ -\mathrm{\Delta }u={|u|}^{p-1}u$ on unbounded domains of $ {\mathbb{R}}^{N}$ JO - Comptes Rendus. Mathématique PY - 2005 SP - 415 EP - 418 VL - 341 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2005.07.006 LA - en ID - CRMATH_2005__341_7_415_0 ER -
Alberto Farina. Liouville-type results for solutions of $ -\mathrm{\Delta }u={|u|}^{p-1}u$ on unbounded domains of $ {\mathbb{R}}^{N}$. Comptes Rendus. Mathématique, Volume 341 (2005) no. 7, pp. 415-418. doi : 10.1016/j.crma.2005.07.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.07.006/
[1] On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., Volume 41 (1988) no. 3, pp. 253-294
[2] Solutions of superlinear elliptic equations and their Morse indices, Comm. Pure Appl. Math., Volume 45 (1992) no. 9, pp. 1205-1215
[3] Elliptic equations with limiting Sobolev exponents – the impact of topology, Frontiers of the Mathematical Sciences: 1985 (New York, 1985), Comm. Pure Appl. Math., Volume 39 (1986) no. Suppl. S, p. S17-S39
[4] On the stability of radial solutions of semilinear elliptic equations in all of , C. R. Math. Acad. Sci. Paris, Ser. I, Volume 338 (2004) no. 10, pp. 769-774
[5] Some notes on the method of moving planes, Bull. Austral. Math. Soc., Volume 46 (1992) no. 3, pp. 425-434
[6] Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A, Volume 93 (1982/83) no. 1–2, pp. 1-14
[7] A. Farina, forthcoming
[8] Further studies of Emden's and similar differential equations, Quart. J. Math. Oxford Ser. (2) (1931), pp. 259-288
[9] A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, Volume 6 (1981) no. 8, pp. 883-901
[10] Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., Volume 34 (1981) no. 4, pp. 525-598
[11] Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., Volume 49 (1972/73), pp. 241-269
[12] Nontrivial solutions of elliptic equations with supercritical exponent in contractible domains, Duke Math. J., Volume 92 (1998) no. 2, pp. 429-457
[13] On the eigenfunctions of the equation , Dokl. Akad. Nauk SSSR, Volume 165 (1965), pp. 36-39 (English translation in Soviet Math. Dokl., 6, 1965, pp. 1408-1411)
[14] On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., Volume 337 (1993) no. 2, pp. 549-590
[15] Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi, J. Amer. Math. Soc., Volume 13 (2000) no. 4, pp. 725-739
[16] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., Volume 42 (1989) no. 3, pp. 271-297
Cited by Sources:
Comments - Policy