Comptes Rendus
Numerical Analysis/Mathematical Problems in Mechanics
A unified fictitious domain model for general embedded boundary conditions
Comptes Rendus. Mathématique, Volume 341 (2005) no. 11, pp. 683-688.

This Note addresses the analysis of a new fictitious domain method for elliptic problems in order to handle general embedded boundary conditions (E.B.C.): Fourier, Neumann and Dirichlet conditions on an immersed interface. Our method is based on a recent model of fracture combining flux and solution jumps on the interface Σ separating the original domain Ω˜ from the auxiliary exterior domain Ωe. A class of methods is derived within the same unified formulation with either no penalty or exterior control in Ωe, or surface penalty on Σ, volume H1 or L2 penalty in Ωe, or both. The consistency (no penalty) or optimal error estimates with respect to the penalty parameter are proved for such methods.

Cette Note analyse une nouvelle méthode de domaine fictif pour des problèmes elliptiques afin d'imposer des conditions aux limites générales : Fourier, Neumann et Dirichlet sur une frontière immergée. Notre méthode est basée sur un récent modèle de fracture combinant les sauts de la solution et du flux sur une interface Σ séparant le domaine originel Ω˜ du domaine extérieur auxiliaire Ωe. Une classe de méthodes est proposée dans la même formulation unifiée avec soit, aucun contrôle extérieur ou pénalisation dans Ωe, soit une pénalisation de surface sur Σ, ou une pénalisation volumique L2 ou H1 dans Ωe ou les deux. La consistance (sans pénalisation) ou des estimations d'erreur optimales en fonction du paramètre de pénalisation sont démontrées pour de telles méthodes.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2005.09.046

Philippe Angot 1

1 LATP-CMI, UMR CNRS 6632, Université de la méditerranée, 39, rue F. Joliot-Curie, 13453 Marseille cedex 13, France
@article{CRMATH_2005__341_11_683_0,
     author = {Philippe Angot},
     title = {A unified fictitious domain model for general embedded boundary conditions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {683--688},
     publisher = {Elsevier},
     volume = {341},
     number = {11},
     year = {2005},
     doi = {10.1016/j.crma.2005.09.046},
     language = {en},
}
TY  - JOUR
AU  - Philippe Angot
TI  - A unified fictitious domain model for general embedded boundary conditions
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 683
EP  - 688
VL  - 341
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2005.09.046
LA  - en
ID  - CRMATH_2005__341_11_683_0
ER  - 
%0 Journal Article
%A Philippe Angot
%T A unified fictitious domain model for general embedded boundary conditions
%J Comptes Rendus. Mathématique
%D 2005
%P 683-688
%V 341
%N 11
%I Elsevier
%R 10.1016/j.crma.2005.09.046
%G en
%F CRMATH_2005__341_11_683_0
Philippe Angot. A unified fictitious domain model for general embedded boundary conditions. Comptes Rendus. Mathématique, Volume 341 (2005) no. 11, pp. 683-688. doi : 10.1016/j.crma.2005.09.046. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.046/

[1] Ph. Angot, Mathematical and numerical modelling for a fictitious domain method with jump and penalized immersed boundary conditions, Preprint in HDR Thesis Univ. Méditerranée Aix-Marseille II, September 1998

[2] Ph. Angot Finite volume methods for non smooth solution of diffusion models application to imperfect contact problems (O.P. Iliev; M.S. Kaschiev; S.D. Margenov; Bl.H. Sendov; P.S. Vassilevski, eds.), Recent Advances in Numerical Methods and Applications. Proc. 4th Int. Conf. NMA'98, Sofia (Bulgarie), World Sci. Pub., 1999, pp. 621-629

[3] Ph. Angot Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows, Math. Methods Appl. Sci. (M2AS), Volume 22 (1999) no. 16, pp. 1395-1412

[4] Ph. Angot; C.-H. Bruneau; P. Fabrie A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., Volume 81 (1999) no. 4, pp. 497-520

[5] Ph. Angot A model of fracture for elliptic problems with flux and solution jumps, C. R. Acad. Sci. Paris, Ser. I Math., Volume 337 (2003) no. 6, pp. 425-430

[6] V. Girault; R. Glowinski Error analysis of a fictitious domain method applied to a Dirichlet problem, Japan J. Indust. Appl. Math., Volume 12 (1995) no. 3, pp. 487-514

[7] R. Glowinski Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984

[8] R. Glowinski; Y. Kuznetsov On the solution of the Dirichlet problem for linear elliptic operators by a distributed Lagrange multiplier method, C. R. Acad. Sci. Paris, Ser. I Math., Volume 327 (1998) no. 7, pp. 693-698

[9] V.D. Kopčenov A method of fictitious domains for the second and third boundary value problems, Trudy Mat. Inst. Steklov, Volume 131 (1974), pp. 119-127 (in Russian)

[10] P. Joly; L. Rhaouti Fictitious domains, H(div) finite elements and Neumann condition: the inf–sup condition, C. R. Acad. Sci. Paris, Ser. I Math., Volume 328 (1999) no. 12, pp. 1225-1230

[11] G.I. Marchuk Methods of Numerical Mathematics, Appl. Math., vol. 2, Springer-Verlag, New York, 1982

[12] J. Nečas Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967

Cited by Sources:

Comments - Policy