This Note addresses the analysis of a new fictitious domain method for elliptic problems in order to handle general embedded boundary conditions (E.B.C.): Fourier, Neumann and Dirichlet conditions on an immersed interface. Our method is based on a recent model of fracture combining flux and solution jumps on the interface Σ separating the original domain from the auxiliary exterior domain . A class of methods is derived within the same unified formulation with either no penalty or exterior control in , or surface penalty on Σ, volume or penalty in , or both. The consistency (no penalty) or optimal error estimates with respect to the penalty parameter are proved for such methods.
Cette Note analyse une nouvelle méthode de domaine fictif pour des problèmes elliptiques afin d'imposer des conditions aux limites générales : Fourier, Neumann et Dirichlet sur une frontière immergée. Notre méthode est basée sur un récent modèle de fracture combinant les sauts de la solution et du flux sur une interface Σ séparant le domaine originel du domaine extérieur auxiliaire . Une classe de méthodes est proposée dans la même formulation unifiée avec soit, aucun contrôle extérieur ou pénalisation dans , soit une pénalisation de surface sur Σ, ou une pénalisation volumique ou dans ou les deux. La consistance (sans pénalisation) ou des estimations d'erreur optimales en fonction du paramètre de pénalisation sont démontrées pour de telles méthodes.
Accepted:
Published online:
Philippe Angot 1
@article{CRMATH_2005__341_11_683_0, author = {Philippe Angot}, title = {A unified fictitious domain model for general embedded boundary conditions}, journal = {Comptes Rendus. Math\'ematique}, pages = {683--688}, publisher = {Elsevier}, volume = {341}, number = {11}, year = {2005}, doi = {10.1016/j.crma.2005.09.046}, language = {en}, }
Philippe Angot. A unified fictitious domain model for general embedded boundary conditions. Comptes Rendus. Mathématique, Volume 341 (2005) no. 11, pp. 683-688. doi : 10.1016/j.crma.2005.09.046. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.046/
[1] Ph. Angot, Mathematical and numerical modelling for a fictitious domain method with jump and penalized immersed boundary conditions, Preprint in HDR Thesis Univ. Méditerranée Aix-Marseille II, September 1998
[2] Finite volume methods for non smooth solution of diffusion models application to imperfect contact problems (O.P. Iliev; M.S. Kaschiev; S.D. Margenov; Bl.H. Sendov; P.S. Vassilevski, eds.), Recent Advances in Numerical Methods and Applications. Proc. 4th Int. Conf. NMA'98, Sofia (Bulgarie), World Sci. Pub., 1999, pp. 621-629
[3] Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows, Math. Methods Appl. Sci. (), Volume 22 (1999) no. 16, pp. 1395-1412
[4] A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., Volume 81 (1999) no. 4, pp. 497-520
[5] A model of fracture for elliptic problems with flux and solution jumps, C. R. Acad. Sci. Paris, Ser. I Math., Volume 337 (2003) no. 6, pp. 425-430
[6] Error analysis of a fictitious domain method applied to a Dirichlet problem, Japan J. Indust. Appl. Math., Volume 12 (1995) no. 3, pp. 487-514
[7] Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984
[8] On the solution of the Dirichlet problem for linear elliptic operators by a distributed Lagrange multiplier method, C. R. Acad. Sci. Paris, Ser. I Math., Volume 327 (1998) no. 7, pp. 693-698
[9] A method of fictitious domains for the second and third boundary value problems, Trudy Mat. Inst. Steklov, Volume 131 (1974), pp. 119-127 (in Russian)
[10] Fictitious domains, H(div) finite elements and Neumann condition: the inf–sup condition, C. R. Acad. Sci. Paris, Ser. I Math., Volume 328 (1999) no. 12, pp. 1225-1230
[11] Methods of Numerical Mathematics, Appl. Math., vol. 2, Springer-Verlag, New York, 1982
[12] Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967
Cited by Sources:
Comments - Policy