[Un modèle de domaine fictif unifié pour des conditions aux limites immergées générales]
Cette Note analyse une nouvelle méthode de domaine fictif pour des problèmes elliptiques afin d'imposer des conditions aux limites générales : Fourier, Neumann et Dirichlet sur une frontière immergée. Notre méthode est basée sur un récent modèle de fracture combinant les sauts de la solution et du flux sur une interface Σ séparant le domaine originel
This Note addresses the analysis of a new fictitious domain method for elliptic problems in order to handle general embedded boundary conditions (E.B.C.): Fourier, Neumann and Dirichlet conditions on an immersed interface. Our method is based on a recent model of fracture combining flux and solution jumps on the interface Σ separating the original domain
Accepté le :
Publié le :
Philippe Angot 1
@article{CRMATH_2005__341_11_683_0, author = {Philippe Angot}, title = {A unified fictitious domain model for general embedded boundary conditions}, journal = {Comptes Rendus. Math\'ematique}, pages = {683--688}, publisher = {Elsevier}, volume = {341}, number = {11}, year = {2005}, doi = {10.1016/j.crma.2005.09.046}, language = {en}, }
Philippe Angot. A unified fictitious domain model for general embedded boundary conditions. Comptes Rendus. Mathématique, Volume 341 (2005) no. 11, pp. 683-688. doi : 10.1016/j.crma.2005.09.046. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.046/
[1] Ph. Angot, Mathematical and numerical modelling for a fictitious domain method with jump and penalized immersed boundary conditions, Preprint in HDR Thesis Univ. Méditerranée Aix-Marseille II, September 1998
[2] Finite volume methods for non smooth solution of diffusion models application to imperfect contact problems (O.P. Iliev; M.S. Kaschiev; S.D. Margenov; Bl.H. Sendov; P.S. Vassilevski, eds.), Recent Advances in Numerical Methods and Applications. Proc. 4th Int. Conf. NMA'98, Sofia (Bulgarie), World Sci. Pub., 1999, pp. 621-629
[3] Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows, Math. Methods Appl. Sci. (
[4] A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., Volume 81 (1999) no. 4, pp. 497-520
[5] A model of fracture for elliptic problems with flux and solution jumps, C. R. Acad. Sci. Paris, Ser. I Math., Volume 337 (2003) no. 6, pp. 425-430
[6] Error analysis of a fictitious domain method applied to a Dirichlet problem, Japan J. Indust. Appl. Math., Volume 12 (1995) no. 3, pp. 487-514
[7] Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984
[8] On the solution of the Dirichlet problem for linear elliptic operators by a distributed Lagrange multiplier method, C. R. Acad. Sci. Paris, Ser. I Math., Volume 327 (1998) no. 7, pp. 693-698
[9] A method of fictitious domains for the second and third boundary value problems, Trudy Mat. Inst. Steklov, Volume 131 (1974), pp. 119-127 (in Russian)
[10] Fictitious domains, H(div) finite elements and Neumann condition: the inf–sup condition, C. R. Acad. Sci. Paris, Ser. I Math., Volume 328 (1999) no. 12, pp. 1225-1230
[11] Methods of Numerical Mathematics, Appl. Math., vol. 2, Springer-Verlag, New York, 1982
[12] Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967
- Implementation of a level-set-based volume penalization method for solving fluid flows around bluff bodies, Physics of Fluids, Volume 36 (2024) no. 1 | DOI:10.1063/5.0175971
- A Review on Some Discrete Variational Techniques for the Approximation of Essential Boundary Conditions, Vietnam Journal of Mathematics (2024) | DOI:10.1007/s10013-024-00702-1
- Error estimates of fictitious domain method with an
penalty approach for elliptic problems, Computational and Applied Mathematics, Volume 41 (2022) no. 1, p. 21 (Id/No 27) | DOI:10.1007/s40314-021-01731-z | Zbl:1499.65724 - Multiscale coupling of FFT-based simulations with the LDC approach, Computer Methods in Applied Mechanics and Engineering, Volume 394 (2022), p. 29 (Id/No 114921) | DOI:10.1016/j.cma.2022.114921 | Zbl:1507.65279
- The fictitious domain method with sharp interface for elasticity systems with general jump embedded boundary conditions, Advances in Applied Mathematics and Mechanics, Volume 13 (2021) no. 1, pp. 119-139 | DOI:10.4208/aamm.oa-2019-0119 | Zbl:1488.65569
- A numerical model for steel continuous casting problem in a time-variable domain, Lobachevskii Journal of Mathematics, Volume 41 (2020) no. 12, pp. 2664-2672 | DOI:10.1134/s1995080220120239 | Zbl:1464.65099
- A versatile hybrid agent-based, particle and partial differential equations method to analyze vascular adaptation, Biomechanics and Modeling in Mechanobiology, Volume 18 (2019) no. 1, p. 29 | DOI:10.1007/s10237-018-1065-0
- Two-phase flow simulation of scour beneath a vibrating pipeline during the tunnel erosion stage, Physics of Fluids, Volume 31 (2019) no. 11 | DOI:10.1063/1.5121346
- The fictitious domain method with
-penalty for the Stokes problem with Dirichlet boundary condition, Applied Numerical Mathematics, Volume 123 (2018), pp. 1-21 | DOI:10.1016/j.apnum.2017.08.005 | Zbl:1433.76044 - Well-posed Stokes/Brinkman and Stokes/Darcy coupling revisited with new jump interface conditions, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 52 (2018) no. 5, pp. 1875-1911 | DOI:10.1051/m2an/2017060 | Zbl:1414.35161
- The fictitious domain method with
-penalty for the Stokes problem with the Dirichlet boundary condition, Numerical Methods for Partial Differential Equations, Volume 34 (2018) no. 3, pp. 881-905 | DOI:10.1002/num.22235 | Zbl:1407.76081 - Consistent closures for Euler-Lagrange models of bi-disperse gas-particle suspensions derived from particle-resolved direct numerical simulations, International Journal of Heat and Mass Transfer, Volume 111 (2017), p. 171 | DOI:10.1016/j.ijheatmasstransfer.2017.03.122
- The fictitious domain method for the Stokes problem with Neumann/free-traction boundary condition, Japan Journal of Industrial and Applied Mathematics, Volume 34 (2017) no. 2, pp. 585-610 | DOI:10.1007/s13160-017-0255-y | Zbl:1433.76143
- Local interactions by diffusion between mixed-phase hydrometeors: insights from model simulations, Mathematics of Climate and Weather Forecasting, Volume 3 (2017), pp. 64-89 | DOI:10.1515/mcwf-2017-0004 | Zbl:1504.86009
- Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions, Physical Review E, Volume 95 (2017) no. 6 | DOI:10.1103/physreve.95.063302
- Numerical simulations of wormlike micelles flows in micro-fluidic T-shaped junctions, Mathematics and Computers in Simulation, Volume 127 (2016), pp. 28-55 | DOI:10.1016/j.matcom.2013.12.006 | Zbl:1520.76003
- Penalization of Robin boundary conditions, Applied Numerical Mathematics, Volume 96 (2015), pp. 134-152 | DOI:10.1016/j.apnum.2015.06.001 | Zbl:1321.65160
- A sharp-interface active penalty method for the incompressible Navier-Stokes equations, Journal of Scientific Computing, Volume 62 (2015) no. 1, pp. 53-77 | DOI:10.1007/s10915-014-9849-6 | Zbl:1309.76144
- An optimal penalty method for a hyperbolic system modeling the edge plasma transport in a tokamak, Journal of Computational Physics, Volume 261 (2014), pp. 1-22 | DOI:10.1016/j.jcp.2013.12.037 | Zbl:1349.82137
- A volume penalization method for incompressible flows and scalar advection-diffusion with moving obstacles, Journal of Computational Physics, Volume 231 (2012) no. 12, pp. 4365-4383 | DOI:10.1016/j.jcp.2012.01.036 | Zbl:1244.76074
- On the well-posed coupling between free fluid and porous viscous flows, Applied Mathematics Letters, Volume 24 (2011) no. 6, pp. 803-810 | DOI:10.1016/j.aml.2010.07.008 | Zbl:1402.76122
- A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 348 (2010) no. 11-12, pp. 697-702 | DOI:10.1016/j.crma.2010.04.022 | Zbl:1194.35317
- Convergence analysis of the
-finite element method for elliptic problems with non-boundary-fitted meshes, International Journal for Numerical Methods in Engineering, Volume 75 (2008) no. 9, pp. 1007-1052 | DOI:10.1002/nme.2278 | Zbl:1195.65154 - Analysis of Finite Element Domain Embedding Methods for Curved Domains using Uniform Grids, SIAM Journal on Numerical Analysis, Volume 46 (2008) no. 6, p. 2843 | DOI:10.1137/060671681
- A fictitious domain approach with spread interface for elliptic problems with general boundary conditions, Computer Methods in Applied Mechanics and Engineering, Volume 196 (2007) no. 4-6, pp. 766-781 | DOI:10.1016/j.cma.2006.05.012 | Zbl:1121.65364
- A general fictitious domain method with immersed jumps and multilevel nested structured meshes, Journal of Computational Physics, Volume 225 (2007) no. 2, pp. 1347-1387 | DOI:10.1016/j.jcp.2007.01.026 | Zbl:1122.65115
- , 17th AIAA Computational Fluid Dynamics Conference (2005) | DOI:10.2514/6.2005-4709
Cité par 27 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier