Comptes Rendus
Numerical Analysis/Mathematical Problems in Mechanics
A unified fictitious domain model for general embedded boundary conditions
[Un modèle de domaine fictif unifié pour des conditions aux limites immergées générales]
Comptes Rendus. Mathématique, Volume 341 (2005) no. 11, pp. 683-688.

Cette Note analyse une nouvelle méthode de domaine fictif pour des problèmes elliptiques afin d'imposer des conditions aux limites générales : Fourier, Neumann et Dirichlet sur une frontière immergée. Notre méthode est basée sur un récent modèle de fracture combinant les sauts de la solution et du flux sur une interface Σ séparant le domaine originel Ω˜ du domaine extérieur auxiliaire Ωe. Une classe de méthodes est proposée dans la même formulation unifiée avec soit, aucun contrôle extérieur ou pénalisation dans Ωe, soit une pénalisation de surface sur Σ, ou une pénalisation volumique L2 ou H1 dans Ωe ou les deux. La consistance (sans pénalisation) ou des estimations d'erreur optimales en fonction du paramètre de pénalisation sont démontrées pour de telles méthodes.

This Note addresses the analysis of a new fictitious domain method for elliptic problems in order to handle general embedded boundary conditions (E.B.C.): Fourier, Neumann and Dirichlet conditions on an immersed interface. Our method is based on a recent model of fracture combining flux and solution jumps on the interface Σ separating the original domain Ω˜ from the auxiliary exterior domain Ωe. A class of methods is derived within the same unified formulation with either no penalty or exterior control in Ωe, or surface penalty on Σ, volume H1 or L2 penalty in Ωe, or both. The consistency (no penalty) or optimal error estimates with respect to the penalty parameter are proved for such methods.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.09.046

Philippe Angot 1

1 LATP-CMI, UMR CNRS 6632, Université de la méditerranée, 39, rue F. Joliot-Curie, 13453 Marseille cedex 13, France
@article{CRMATH_2005__341_11_683_0,
     author = {Philippe Angot},
     title = {A unified fictitious domain model for general embedded boundary conditions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {683--688},
     publisher = {Elsevier},
     volume = {341},
     number = {11},
     year = {2005},
     doi = {10.1016/j.crma.2005.09.046},
     language = {en},
}
TY  - JOUR
AU  - Philippe Angot
TI  - A unified fictitious domain model for general embedded boundary conditions
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 683
EP  - 688
VL  - 341
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2005.09.046
LA  - en
ID  - CRMATH_2005__341_11_683_0
ER  - 
%0 Journal Article
%A Philippe Angot
%T A unified fictitious domain model for general embedded boundary conditions
%J Comptes Rendus. Mathématique
%D 2005
%P 683-688
%V 341
%N 11
%I Elsevier
%R 10.1016/j.crma.2005.09.046
%G en
%F CRMATH_2005__341_11_683_0
Philippe Angot. A unified fictitious domain model for general embedded boundary conditions. Comptes Rendus. Mathématique, Volume 341 (2005) no. 11, pp. 683-688. doi : 10.1016/j.crma.2005.09.046. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.046/

[1] Ph. Angot, Mathematical and numerical modelling for a fictitious domain method with jump and penalized immersed boundary conditions, Preprint in HDR Thesis Univ. Méditerranée Aix-Marseille II, September 1998

[2] Ph. Angot Finite volume methods for non smooth solution of diffusion models application to imperfect contact problems (O.P. Iliev; M.S. Kaschiev; S.D. Margenov; Bl.H. Sendov; P.S. Vassilevski, eds.), Recent Advances in Numerical Methods and Applications. Proc. 4th Int. Conf. NMA'98, Sofia (Bulgarie), World Sci. Pub., 1999, pp. 621-629

[3] Ph. Angot Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows, Math. Methods Appl. Sci. (M2AS), Volume 22 (1999) no. 16, pp. 1395-1412

[4] Ph. Angot; C.-H. Bruneau; P. Fabrie A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., Volume 81 (1999) no. 4, pp. 497-520

[5] Ph. Angot A model of fracture for elliptic problems with flux and solution jumps, C. R. Acad. Sci. Paris, Ser. I Math., Volume 337 (2003) no. 6, pp. 425-430

[6] V. Girault; R. Glowinski Error analysis of a fictitious domain method applied to a Dirichlet problem, Japan J. Indust. Appl. Math., Volume 12 (1995) no. 3, pp. 487-514

[7] R. Glowinski Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984

[8] R. Glowinski; Y. Kuznetsov On the solution of the Dirichlet problem for linear elliptic operators by a distributed Lagrange multiplier method, C. R. Acad. Sci. Paris, Ser. I Math., Volume 327 (1998) no. 7, pp. 693-698

[9] V.D. Kopčenov A method of fictitious domains for the second and third boundary value problems, Trudy Mat. Inst. Steklov, Volume 131 (1974), pp. 119-127 (in Russian)

[10] P. Joly; L. Rhaouti Fictitious domains, H(div) finite elements and Neumann condition: the inf–sup condition, C. R. Acad. Sci. Paris, Ser. I Math., Volume 328 (1999) no. 12, pp. 1225-1230

[11] G.I. Marchuk Methods of Numerical Mathematics, Appl. Math., vol. 2, Springer-Verlag, New York, 1982

[12] J. Nečas Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967

  • Prashant Kumar; Vivek Kumar; Di Chen; Yosuke Hasegawa Implementation of a level-set-based volume penalization method for solving fluid flows around bluff bodies, Physics of Fluids, Volume 36 (2024) no. 1 | DOI:10.1063/5.0175971
  • Franz Chouly A Review on Some Discrete Variational Techniques for the Approximation of Essential Boundary Conditions, Vietnam Journal of Mathematics (2024) | DOI:10.1007/s10013-024-00702-1
  • Swapnil Kale; Debasish Pradhan Error estimates of fictitious domain method with an H1 penalty approach for elliptic problems, Computational and Applied Mathematics, Volume 41 (2022) no. 1, p. 21 (Id/No 27) | DOI:10.1007/s40314-021-01731-z | Zbl:1499.65724
  • Noé Brice Nkoumbou Kaptchouang; Lionel Gélébart Multiscale coupling of FFT-based simulations with the LDC approach, Computer Methods in Applied Mechanics and Engineering, Volume 394 (2022), p. 29 (Id/No 114921) | DOI:10.1016/j.cma.2022.114921 | Zbl:1507.65279
  • Mohamed Kara; Salim Mesbahi; Philippe Angot The fictitious domain method with sharp interface for elasticity systems with general jump embedded boundary conditions, Advances in Applied Mathematics and Mechanics, Volume 13 (2021) no. 1, pp. 119-139 | DOI:10.4208/aamm.oa-2019-0119 | Zbl:1488.65569
  • A. Lapin; E. Laitinen A numerical model for steel continuous casting problem in a time-variable domain, Lobachevskii Journal of Mathematics, Volume 41 (2020) no. 12, pp. 2664-2672 | DOI:10.1134/s1995080220120239 | Zbl:1464.65099
  • Marc Garbey; Stefano Casarin; Scott A. Berceli A versatile hybrid agent-based, particle and partial differential equations method to analyze vascular adaptation, Biomechanics and Modeling in Mechanobiology, Volume 18 (2019) no. 1, p. 29 | DOI:10.1007/s10237-018-1065-0
  • Novan Tofany; Ying Min Low; Cheng-Hsien Lee; Yee-Meng Chiew Two-phase flow simulation of scour beneath a vibrating pipeline during the tunnel erosion stage, Physics of Fluids, Volume 31 (2019) no. 11 | DOI:10.1063/1.5121346
  • Guanyu Zhou The fictitious domain method with H1-penalty for the Stokes problem with Dirichlet boundary condition, Applied Numerical Mathematics, Volume 123 (2018), pp. 1-21 | DOI:10.1016/j.apnum.2017.08.005 | Zbl:1433.76044
  • Philippe Angot Well-posed Stokes/Brinkman and Stokes/Darcy coupling revisited with new jump interface conditions, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 52 (2018) no. 5, pp. 1875-1911 | DOI:10.1051/m2an/2017060 | Zbl:1414.35161
  • Guanyu Zhou The fictitious domain method with L2-penalty for the Stokes problem with the Dirichlet boundary condition, Numerical Methods for Partial Differential Equations, Volume 34 (2018) no. 3, pp. 881-905 | DOI:10.1002/num.22235 | Zbl:1407.76081
  • Federico Municchi; Stefan Radl Consistent closures for Euler-Lagrange models of bi-disperse gas-particle suspensions derived from particle-resolved direct numerical simulations, International Journal of Heat and Mass Transfer, Volume 111 (2017), p. 171 | DOI:10.1016/j.ijheatmasstransfer.2017.03.122
  • Guanyu Zhou The fictitious domain method for the Stokes problem with Neumann/free-traction boundary condition, Japan Journal of Industrial and Applied Mathematics, Volume 34 (2017) no. 2, pp. 585-610 | DOI:10.1007/s13160-017-0255-y | Zbl:1433.76143
  • Manuel Baumgartner; Peter Spichtinger Local interactions by diffusion between mixed-phase hydrometeors: insights from model simulations, Mathematics of Climate and Weather Forecasting, Volume 3 (2017), pp. 64-89 | DOI:10.1515/mcwf-2017-0004 | Zbl:1504.86009
  • Philippe Angot; Benoît Goyeau; J. Alberto Ochoa-Tapia Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions, Physical Review E, Volume 95 (2017) no. 6 | DOI:10.1103/physreve.95.063302
  • M. Colin; T. Colin; J. Dambrine Numerical simulations of wormlike micelles flows in micro-fluidic T-shaped junctions, Mathematics and Computers in Simulation, Volume 127 (2016), pp. 28-55 | DOI:10.1016/j.matcom.2013.12.006 | Zbl:1520.76003
  • Bouchra Bensiali; Guillaume Chiavassa; Jacques Liandrat Penalization of Robin boundary conditions, Applied Numerical Mathematics, Volume 96 (2015), pp. 134-152 | DOI:10.1016/j.apnum.2015.06.001 | Zbl:1321.65160
  • D. Shirokoff; J.-C. Nave A sharp-interface active penalty method for the incompressible Navier-Stokes equations, Journal of Scientific Computing, Volume 62 (2015) no. 1, pp. 53-77 | DOI:10.1007/s10915-014-9849-6 | Zbl:1309.76144
  • Philippe Angot; Thomas Auphan; Olivier Guès An optimal penalty method for a hyperbolic system modeling the edge plasma transport in a tokamak, Journal of Computational Physics, Volume 261 (2014), pp. 1-22 | DOI:10.1016/j.jcp.2013.12.037 | Zbl:1349.82137
  • Benjamin Kadoch; Dmitry Kolomenskiy; Philippe Angot; Kai Schneider A volume penalization method for incompressible flows and scalar advection-diffusion with moving obstacles, Journal of Computational Physics, Volume 231 (2012) no. 12, pp. 4365-4383 | DOI:10.1016/j.jcp.2012.01.036 | Zbl:1244.76074
  • Philippe Angot On the well-posed coupling between free fluid and porous viscous flows, Applied Mathematics Letters, Volume 24 (2011) no. 6, pp. 803-810 | DOI:10.1016/j.aml.2010.07.008 | Zbl:1402.76122
  • Philippe Angot A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 348 (2010) no. 11-12, pp. 697-702 | DOI:10.1016/j.crma.2010.04.022 | Zbl:1194.35317
  • Isabelle Ramière Convergence analysis of the Q1-finite element method for elliptic problems with non-boundary-fitted meshes, International Journal for Numerical Methods in Engineering, Volume 75 (2008) no. 9, pp. 1007-1052 | DOI:10.1002/nme.2278 | Zbl:1195.65154
  • Sheng Zhang Analysis of Finite Element Domain Embedding Methods for Curved Domains using Uniform Grids, SIAM Journal on Numerical Analysis, Volume 46 (2008) no. 6, p. 2843 | DOI:10.1137/060671681
  • Isabelle Ramière; Philippe Angot; Michel Belliard A fictitious domain approach with spread interface for elliptic problems with general boundary conditions, Computer Methods in Applied Mechanics and Engineering, Volume 196 (2007) no. 4-6, pp. 766-781 | DOI:10.1016/j.cma.2006.05.012 | Zbl:1121.65364
  • Isabelle Ramière; Philippe Angot; Michel Belliard A general fictitious domain method with immersed jumps and multilevel nested structured meshes, Journal of Computational Physics, Volume 225 (2007) no. 2, pp. 1347-1387 | DOI:10.1016/j.jcp.2007.01.026 | Zbl:1122.65115
  • Isabelle Ramiere; Philippe Angot; Michel Belliard, 17th AIAA Computational Fluid Dynamics Conference (2005) | DOI:10.2514/6.2005-4709

Cité par 27 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: