[Un modèle de domaine fictif unifié pour des conditions aux limites immergées générales]
Cette Note analyse une nouvelle méthode de domaine fictif pour des problèmes elliptiques afin d'imposer des conditions aux limites générales : Fourier, Neumann et Dirichlet sur une frontière immergée. Notre méthode est basée sur un récent modèle de fracture combinant les sauts de la solution et du flux sur une interface Σ séparant le domaine originel
This Note addresses the analysis of a new fictitious domain method for elliptic problems in order to handle general embedded boundary conditions (E.B.C.): Fourier, Neumann and Dirichlet conditions on an immersed interface. Our method is based on a recent model of fracture combining flux and solution jumps on the interface Σ separating the original domain
Accepté le :
Publié le :
Philippe Angot 1
@article{CRMATH_2005__341_11_683_0, author = {Philippe Angot}, title = {A unified fictitious domain model for general embedded boundary conditions}, journal = {Comptes Rendus. Math\'ematique}, pages = {683--688}, publisher = {Elsevier}, volume = {341}, number = {11}, year = {2005}, doi = {10.1016/j.crma.2005.09.046}, language = {en}, }
Philippe Angot. A unified fictitious domain model for general embedded boundary conditions. Comptes Rendus. Mathématique, Volume 341 (2005) no. 11, pp. 683-688. doi : 10.1016/j.crma.2005.09.046. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.046/
[1] Ph. Angot, Mathematical and numerical modelling for a fictitious domain method with jump and penalized immersed boundary conditions, Preprint in HDR Thesis Univ. Méditerranée Aix-Marseille II, September 1998
[2] Finite volume methods for non smooth solution of diffusion models application to imperfect contact problems (O.P. Iliev; M.S. Kaschiev; S.D. Margenov; Bl.H. Sendov; P.S. Vassilevski, eds.), Recent Advances in Numerical Methods and Applications. Proc. 4th Int. Conf. NMA'98, Sofia (Bulgarie), World Sci. Pub., 1999, pp. 621-629
[3] Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows, Math. Methods Appl. Sci. (
[4] A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., Volume 81 (1999) no. 4, pp. 497-520
[5] A model of fracture for elliptic problems with flux and solution jumps, C. R. Acad. Sci. Paris, Ser. I Math., Volume 337 (2003) no. 6, pp. 425-430
[6] Error analysis of a fictitious domain method applied to a Dirichlet problem, Japan J. Indust. Appl. Math., Volume 12 (1995) no. 3, pp. 487-514
[7] Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984
[8] On the solution of the Dirichlet problem for linear elliptic operators by a distributed Lagrange multiplier method, C. R. Acad. Sci. Paris, Ser. I Math., Volume 327 (1998) no. 7, pp. 693-698
[9] A method of fictitious domains for the second and third boundary value problems, Trudy Mat. Inst. Steklov, Volume 131 (1974), pp. 119-127 (in Russian)
[10] Fictitious domains, H(div) finite elements and Neumann condition: the inf–sup condition, C. R. Acad. Sci. Paris, Ser. I Math., Volume 328 (1999) no. 12, pp. 1225-1230
[11] Methods of Numerical Mathematics, Appl. Math., vol. 2, Springer-Verlag, New York, 1982
[12] Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967
Cité par Sources :
Commentaires - Politique