Any idempotent element e of an (associative) algebra T defines an algebra with unit e. We show that the morphism which compares their Hochschild cohomology algebras is a Gerstenhaber algebras morphism. Moreover, this morphism factorizes through the cohomological algebras of many triangular algebras.
Tout idempotent e d'une algèbre (associative unitaire) T définit une algèbre , d'unité e. Nous montrons que la comparaison des cohomologies de Hochschild et se fait par un morphisme d'algèbres de Gerstenhaber qui, de surcroît, se factorise par les algèbres de cohomologie de différentes algèbres triangulaires.
Accepted:
Published online:
Belkacem Bendiffalah 1; Daniel Guin 1
@article{CRMATH_2006__342_6_371_0, author = {Belkacem Bendiffalah and Daniel Guin}, title = {Idempotent et cohomologie de {Hochschild}}, journal = {Comptes Rendus. Math\'ematique}, pages = {371--376}, publisher = {Elsevier}, volume = {342}, number = {6}, year = {2006}, doi = {10.1016/j.crma.2006.01.003}, language = {fr}, }
Belkacem Bendiffalah; Daniel Guin. Idempotent et cohomologie de Hochschild. Comptes Rendus. Mathématique, Volume 342 (2006) no. 6, pp. 371-376. doi : 10.1016/j.crma.2006.01.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.01.003/
[1] Cohomologie de l'algèbre triangulaire et applications, J. Algebra, Volume 282 (2004), pp. 513-537
[2] Morita contexts, idempotents, and Hochschild cohomology – with applications to invariant rings, Contemp. Math., Volume 331 (2003), pp. 25-53
[3] Tensor Hochshild homology and cohomology, Lecture Notes in Pure and Appl. Math., vol. 210, Dekker, New York, 2000, pp. 35-51
[4] Hochschild cohomology rings and triangular rings, Representations of Algebras I & II, Beijing Normal University Press, 2002, pp. 192-200
[5] Hochschild cohomology of finite dimensional algebras, Lecture Notes in Math., vol. 1404, Springer, 1989, pp. 108-126
[6] B. Keller, Derived invariance of higher structures on the Hochschild complex, Preprint, 2003
[7] Hochschild cohomology of triangular matrix algebra, J. Algebra, Volume 233 (2000), pp. 502-525
Cited by Sources:
Comments - Policy