Comptes Rendus
Algèbre homologique
Idempotent et cohomologie de Hochschild
[Idempotent and Hochschild cohomology]
Comptes Rendus. Mathématique, Volume 342 (2006) no. 6, pp. 371-376.

Any idempotent element e of an (associative) algebra T defines an algebra A=eTe with unit e. We show that the morphism which compares their Hochschild cohomology algebras is a Gerstenhaber algebras morphism. Moreover, this morphism factorizes through the cohomological algebras of many triangular algebras.

Tout idempotent e d'une algèbre (associative unitaire) T définit une algèbre A=eTe, d'unité e. Nous montrons que la comparaison des cohomologies de Hochschild H(T,T) et H(A,A) se fait par un morphisme d'algèbres de Gerstenhaber qui, de surcroît, se factorise par les algèbres de cohomologie de différentes algèbres triangulaires.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2006.01.003

Belkacem Bendiffalah 1; Daniel Guin 1

1 Institut de mathématiques et de modélisation de Montpellier, UMR 5149, université Montpellier II, place Eugène-Bataillon, 34095 Montpellier cedex 5, France
@article{CRMATH_2006__342_6_371_0,
     author = {Belkacem Bendiffalah and Daniel Guin},
     title = {Idempotent et cohomologie de {Hochschild}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {371--376},
     publisher = {Elsevier},
     volume = {342},
     number = {6},
     year = {2006},
     doi = {10.1016/j.crma.2006.01.003},
     language = {fr},
}
TY  - JOUR
AU  - Belkacem Bendiffalah
AU  - Daniel Guin
TI  - Idempotent et cohomologie de Hochschild
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 371
EP  - 376
VL  - 342
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2006.01.003
LA  - fr
ID  - CRMATH_2006__342_6_371_0
ER  - 
%0 Journal Article
%A Belkacem Bendiffalah
%A Daniel Guin
%T Idempotent et cohomologie de Hochschild
%J Comptes Rendus. Mathématique
%D 2006
%P 371-376
%V 342
%N 6
%I Elsevier
%R 10.1016/j.crma.2006.01.003
%G fr
%F CRMATH_2006__342_6_371_0
Belkacem Bendiffalah; Daniel Guin. Idempotent et cohomologie de Hochschild. Comptes Rendus. Mathématique, Volume 342 (2006) no. 6, pp. 371-376. doi : 10.1016/j.crma.2006.01.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.01.003/

[1] B. Bendiffalah; D. Guin Cohomologie de l'algèbre triangulaire et applications, J. Algebra, Volume 282 (2004), pp. 513-537

[2] R.-O. Buchweitz Morita contexts, idempotents, and Hochschild cohomology – with applications to invariant rings, Contemp. Math., Volume 331 (2003), pp. 25-53

[3] C. Cibils Tensor Hochshild homology and cohomology, Lecture Notes in Pure and Appl. Math., vol. 210, Dekker, New York, 2000, pp. 35-51

[4] E.L. Green; Ø. Solberg Hochschild cohomology rings and triangular rings, Representations of Algebras I & II, Beijing Normal University Press, 2002, pp. 192-200

[5] D. Happel Hochschild cohomology of finite dimensional algebras, Lecture Notes in Math., vol. 1404, Springer, 1989, pp. 108-126

[6] B. Keller, Derived invariance of higher structures on the Hochschild complex, Preprint, 2003

[7] S. Michelena; M.I. Platzeck Hochschild cohomology of triangular matrix algebra, J. Algebra, Volume 233 (2000), pp. 502-525

Cited by Sources:

Comments - Policy