Tout idempotent e d'une algèbre (associative unitaire) T définit une algèbre
Any idempotent element e of an (associative) algebra T defines an algebra
Accepté le :
Publié le :
Belkacem Bendiffalah 1 ; Daniel Guin 1
@article{CRMATH_2006__342_6_371_0, author = {Belkacem Bendiffalah and Daniel Guin}, title = {Idempotent et cohomologie de {Hochschild}}, journal = {Comptes Rendus. Math\'ematique}, pages = {371--376}, publisher = {Elsevier}, volume = {342}, number = {6}, year = {2006}, doi = {10.1016/j.crma.2006.01.003}, language = {fr}, }
Belkacem Bendiffalah; Daniel Guin. Idempotent et cohomologie de Hochschild. Comptes Rendus. Mathématique, Volume 342 (2006) no. 6, pp. 371-376. doi : 10.1016/j.crma.2006.01.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.01.003/
[1] Cohomologie de l'algèbre triangulaire et applications, J. Algebra, Volume 282 (2004), pp. 513-537
[2] Morita contexts, idempotents, and Hochschild cohomology – with applications to invariant rings, Contemp. Math., Volume 331 (2003), pp. 25-53
[3] Tensor Hochshild homology and cohomology, Lecture Notes in Pure and Appl. Math., vol. 210, Dekker, New York, 2000, pp. 35-51
[4] Hochschild cohomology rings and triangular rings, Representations of Algebras I & II, Beijing Normal University Press, 2002, pp. 192-200
[5] Hochschild cohomology of finite dimensional algebras, Lecture Notes in Math., vol. 1404, Springer, 1989, pp. 108-126
[6] B. Keller, Derived invariance of higher structures on the Hochschild complex, Preprint, 2003
[7] Hochschild cohomology of triangular matrix algebra, J. Algebra, Volume 233 (2000), pp. 502-525
Cité par Sources :
Commentaires - Politique