[About the Bergman property]
In a recent preprint, George M. Bergman has investigated the following property:
for any generating set X of the group G there exists an integer n such that any element of G is a product of n elements of . We will say in this case that G has the Bergman property.
We have solved some of the questions asked in the above mentioned preprint and have found it suitable to investigate this property in a more general context, in particular for rings (essentially Boolean rings).
Dans un preprint récent George M. Bergman a étudié la propriété suivante :
pour tout ensemble X de générateurs du groupe G, il existe un entier n tel que tout élément de G est le produit de n éléments de . Nous dirons dans ce cas que G a la propriété de Bergman.
Nous avons résolu certaines des questions posées dans le preprint mentionné ci-dessus et avons jugé pertinent d'étudier cette propriété dans un contexte plus général, en particulier celui des anneaux (essentiellement des anneaux de Boole).
Accepted:
Published online:
Anatole Khelif 1
@article{CRMATH_2006__342_6_377_0, author = {Anatole Khelif}, title = {A propos de la propri\'et\'e de {Bergman}}, journal = {Comptes Rendus. Math\'ematique}, pages = {377--380}, publisher = {Elsevier}, volume = {342}, number = {6}, year = {2006}, doi = {10.1016/j.crma.2006.01.010}, language = {fr}, }
Anatole Khelif. A propos de la propriété de Bergman. Comptes Rendus. Mathématique, Volume 342 (2006) no. 6, pp. 377-380. doi : 10.1016/j.crma.2006.01.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.01.010/
[1] Generating infinite symmetric groups (Bull. London Math. Soc., in press. Preprint version, 9 p. arXiv) | arXiv
[2] Strongly bounded groups and infinite powers of finite groups (Comm. Algebra, in press, arXiv) | arXiv
[3] Uncountable cofinalities of permutation groups, Bull. London Math. Soc. (2), Volume 71 (2005), pp. 335-344
[4] Generating automorphism groups of chains, Forum Math., Volume 17 (2005), pp. 699-710
[5] Model Theory, Cambridge University Press, Cambridge, 1993
[6] A. Kechris, C. Rosendal, Turbulence amalgamation and generic automorphisms of homogenous structures, in press
[7] Une propriété des produits directs infinis de groupes finis isomorphes, C. R. Acad. Sci. Paris Ser. A, Volume 279 (1974), pp. 583-585
[8] On a problem of Kurosh, Jonsson groups, and applications, In Word Problems II, North-Holland, 1980, pp. 373-394
Cited by Sources:
Comments - Policy