Cut loci in geometric three-manifolds equipped with their natural metrics are an interesting source of spines with small number of vertices. An application of this principle to lens manifolds reveals an interplay between their geometry and topology, combinatorial types of convex hulls of group orbits, and estimates of rotation distance between certain triangulations.
Les cut loci dans les variétés géométriques de dimension 3 par rapport à leurs métriques naturelles forment une classe remarquable d'épines. Par exemple, ces épines ont un petit nombre de sommets. En appliquant cette idée aux espaces lenticulaires, nous étudions des rapports entre leurs géométrie et topologie, les types combinatoires des enveloppes convexes des -orbites, et des estimations de distance de rotation entre triangulations spécifiques d'un p-gone.
Accepted:
Published online:
Sergei Anisov 1
@article{CRMATH_2006__342_8_595_0, author = {Sergei Anisov}, title = {Cut loci in lens manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {595--600}, publisher = {Elsevier}, volume = {342}, number = {8}, year = {2006}, doi = {10.1016/j.crma.2006.01.025}, language = {en}, }
Sergei Anisov. Cut loci in lens manifolds. Comptes Rendus. Mathématique, Volume 342 (2006) no. 8, pp. 595-600. doi : 10.1016/j.crma.2006.01.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.01.025/
[1] Geometrical spines of lens manifolds | arXiv
[2] A Panoramic View of Riemannian Geometry, Springer-Verlag, Berlin, 2003
[3] The structure of the cut locus in dimension less than or equal to six, Compositio Math., Volume 37 (1978), pp. 103-119
[4] An embedding theorem for connected 3-manifolds with boundary, Proc. Amer. Math. Soc., Volume 16 (1965), pp. 559-566
[5] Foundations of Differential Geometry, vol. II, John Wiley & Sons, Inc., New York, 1969
[6] Complexity theory of three-dimensional manifolds, Acta Appl. Math., Volume 19 (1990), pp. 101-130
[7] Algorithmic Topology and Classification of 3-Manifolds, Springer-Verlag, Berlin, 2003
[8] Polymake: A tool for the algorithmic treatment of polytopes and polyhedra, www.math.tu-berlin.de/polymake
[9] Computational Geometry. An Introduction, Springer-Verlag, New York, 1985
[10] Rotation distance, triangulations, and hyperbolic geometry, J. Amer. Math. Soc., Volume 1 (1988) no. 3, pp. 647-681
Cited by Sources:
Comments - Policy