Dans cette Note, on construit pour une certaine surface normale X un objet de dont les faisceaux d'homologie ne sont pas strictement -invariants. Ceci est en contradiction avec la conjecture de -connexité de F. Morel.
In this Note, we construct for some normal surface X an object of whose homology sheaves are not strictly -invariant. This disproves the -connectivity conjecture of F. Morel.
Accepté le :
Publié le :
Joseph Ayoub 1
@article{CRMATH_2006__342_12_943_0, author = {Joseph Ayoub}, title = {Un contre-exemple \`a la conjecture de $ {\mathbb{A}}^{1}$-connexit\'e de {F.} {Morel}}, journal = {Comptes Rendus. Math\'ematique}, pages = {943--948}, publisher = {Elsevier}, volume = {342}, number = {12}, year = {2006}, doi = {10.1016/j.crma.2006.04.017}, language = {fr}, }
Joseph Ayoub. Un contre-exemple à la conjecture de $ {\mathbb{A}}^{1}$-connexité de F. Morel. Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 943-948. doi : 10.1016/j.crma.2006.04.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.04.017/
[1] Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique http://www.math.uiuc.edu/K-theory/0761/ (Thèse de Doctorat de l'Université Paris 7, Preprint, 12 Décembre 2005, K-Theory Preprint Archives)
[2] The Néron–Severi group and the mixed Hodge structure on . Appendix to “On the Néron–Severi group of a singular variety” [J. Reine Angew. Math. 435 (1993) 65–82], J. Reine Angew. Math., Volume 450 (1994), pp. 37-42
[3] Module homotopiques avec transfers et motifs génériques http://www.math.uiuc.edu/K-theory/0766/ (Thèse de Doctorat de l'Université Paris 7, Preprint, 16 January 2006, K-Theory Preprint Archives)
[4] Lectures in motivic cohomology (lectures given by V. Voevodsky in 1999–2000) http://math.rutgers.edu/~weibel/motiviclectures.html
[5] An introduction to -homotopy theory (M. Karoubi; A.O. Kuku; C. Pedrini, eds.), Contemporary Developments in Algebraic K-Theory, I.C.T. P Lecture Notes, vol. 15, 2003, pp. 357-441
[6] The stable -connectivity theorems http://www.mathematik.uni-muenchen.de/~morel/listepublications.html (Preprint, June 2004. A paraître dans : K-Theory Journal, Disponible à :)
[7] -homotopy theory of schemes, Publ. Math. H.I.E.S, Volume 90 (1999), pp. 45-143
[8] Relative cycles and chow sheaves, Cycles, Transfers, and Motivic Homology Theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 10-86
[9] Cohomological theory of presheaves with transfers, Cycles, Transfers, and Motivic Homology Theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 87-137
[10] Triangulated categories of motives over a field, Cycles, Transfers, and Motivic Homology Theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 188-238
[11] Cancellation theorem http://www.math.uiuc.edu/K-theory/0541/ (Preprint, January 28, 2002, K-Theory Preprint Archives)
Cité par Sources :
Commentaires - Politique