For any essentially finite minimal real-analytic generic submanifold , , we show that for every point the local real-analytic CR automorphisms of M fixing p can be parametrized real-analytically by their jets at p. As an application, we derive a Lie group structure for the stability group . We also show that the order of the jet space in which the group embeds can be chosen to depend upper-semicontinuously on p. This yields that given any compact real-analytic minimal CR submanifold M in , there exists an integer k depending only on M such that for every point local CR diffeomorphisms mapping a neighbourhood of p in M into another real-analytic CR submanifold in with the same CR dimension as that of M are uniquely determined by their k-jet at p.
Pour toute sous-variété analytique réelle générique essentiellement finie et minimale , , nous montrons que pour tout point , les automorphismes CR locaux analytiques réels de M fixant p sont paramétrés analytiquement par leur -jets en p. Comme application, nous obtenons une structure de groupe de Lie sur le groupe d'isotropie . Nous montrons aussi que l'ordre de l'espace des jets dans lequel le groupe se plonge peut être choisi de façon à ce que l'application soit semi-continue supérieurement. En corollaire, nous obtenons qu'étant donnée toute sous-variété CR compacte analytique réelle et minimale , il existe un entier positif k, dépendant uniquement de M, tel que pour tout point les difféomorphismes CR locaux envoyant un voisinage de p dans M sur toute autre sous-variété CR de de même dimension CR que celle de M sont uniquement déterminés par leur k-jet en p.
Accepted:
Published online:
Bernhard Lamel 1; Nordine Mir 2
@article{CRMATH_2006__343_3_169_0, author = {Bernhard Lamel and Nordine Mir}, title = {On the stability group of {CR} manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {169--172}, publisher = {Elsevier}, volume = {343}, number = {3}, year = {2006}, doi = {10.1016/j.crma.2006.06.016}, language = {en}, }
Bernhard Lamel; Nordine Mir. On the stability group of CR manifolds. Comptes Rendus. Mathématique, Volume 343 (2006) no. 3, pp. 169-172. doi : 10.1016/j.crma.2006.06.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.06.016/
[1] Parametrization of local biholomorphisms of real analytic hypersurfaces, Asian J. Math., Volume 1 (1997) no. 1, pp. 1-16
[2] Rational dependence of smooth and analytic CR mappings on their jets, Math. Ann., Volume 315 (1999), pp. 205-249
[3] Local geometric properties of real submanifolds in complex space, Bull. Amer. Math. Soc. (N.S.), Volume 37 (2000) no. 3, pp. 309-336
[4] Convergence and finite determination of formal CR mappings, J. Amer. Math. Soc., Volume 13 (2000) no. 4, pp. 697-723
[5] On the analyticity of CR mappings, Ann. of Math. (2), Volume 122 (1985) no. 2, pp. 365-400
[6] Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary, J. Amer. Math. Soc., Volume 7 (1994) no. 3, pp. 661-676
[7] Pseudoconvex domains with real-analytic boundary, Ann. of Math. (2), Volume 107 (1978) no. 2, pp. 317-384
[8] A reflection principle for degenerate real hypersurfaces, Duke Math. J., Volume 47 (1980) no. 4, pp. 835-843
[9] Finite jet determination of local analytic CR automorphisms and their parametrization by 2-jets in the finite type case, Geom. Funct. Anal., Volume 13 (2003) no. 3, pp. 546-573
[10] A boundary rigidity problem for holomorphic mappings on some weakly pseudoconvex domains, Canad. J. Math., Volume 47 (1995) no. 2, pp. 405-420
[11] B. Lamel, N. Mir, Parametrization of local CR automorphisms by finite jets and applications, J. Amer. Math. Soc., in press
[12] Extension of CR-functions into a wedge from a manifold of finite type, Mat. Sb. (N.S.), Volume 136(178) (1988) no. 1, pp. 128-139
[13] Holomorphic mappings and the geometry of hypersurfaces, Several Complex Variables I, Encyclopaedia of Mathematical Sciences, vol. 7, Springer-Verlag, Berlin, 1985, pp. 159-214
[14] Germs of local automorphisms of real-analytic CR structures and analytic dependence on k-jets, Math. Res. Lett., Volume 4 (1997) no. 6, pp. 823-842
Cited by Sources:
Comments - Policy