[Un nouveau résultat de stabilité pour les solutions de viscosité d'équations paraboliques non-linéaires avec convergence faible en temps]
Nous obtenons un nouveau résultat de stabilité pour les solutions de viscosité d'équations fortement non linéaires paraboliques dans le cas où l'on n'a qu'une convergence faible en temps pour les non-linéarités.
We present a new stability result for viscosity solutions of fully nonlinear parabolic equations which allows to pass to the limit when one has only weak convergence in time of the nonlinearities.
Accepté le :
Publié le :
Guy Barles 1
@article{CRMATH_2006__343_3_173_0, author = {Guy Barles}, title = {A new stability result for viscosity solutions of nonlinear parabolic equations with weak convergence in time}, journal = {Comptes Rendus. Math\'ematique}, pages = {173--178}, publisher = {Elsevier}, volume = {343}, number = {3}, year = {2006}, doi = {10.1016/j.crma.2006.06.022}, language = {en}, }
TY - JOUR AU - Guy Barles TI - A new stability result for viscosity solutions of nonlinear parabolic equations with weak convergence in time JO - Comptes Rendus. Mathématique PY - 2006 SP - 173 EP - 178 VL - 343 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2006.06.022 LA - en ID - CRMATH_2006__343_3_173_0 ER -
Guy Barles. A new stability result for viscosity solutions of nonlinear parabolic equations with weak convergence in time. Comptes Rendus. Mathématique, Volume 343 (2006) no. 3, pp. 173-178. doi : 10.1016/j.crma.2006.06.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.06.022/
[1] Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Systems and Control: Foundations and Applications, Birkhäuser, Boston, 1997
[2] A simple proof of convergence for an approximation scheme for computing motions by mean curvature, SIAM J. Numer. Anal., Volume 32 (1995) no. 2, pp. 484-500
[3] M. Bourgoing, Viscosity solutions of fully nonlinear second order parabolic equations with L1-time dependence and Neumann boundary conditions, Preprint
[4] M. Bourgoing, Viscosity solutions of fully nonlinear second order parabolic equations with L1-time dependence and Neumann boundary conditions, Existence and applications to the level-set approach, Preprint
[5] User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), Volume 27 (1992) no. 1, pp. 1-67
[6] Controlled Markov Processes and Viscosity Solutions, Applications of Mathematics (New York), vol. 25, Springer-Verlag, New York, 1993
[7] Hamilton–Jacobi equations with discontinuous Hamiltonians on arbitrary open sets, Bull. Fac. Sci. Engrg. Chuo Univ., Volume 28 (1985), pp. 33-77
[8] Remarks on Hamilton–Jacobi equations with measurable time-dependent Hamiltonians, Non-linear Analysis. Theory Methods and Applications, Volume 11 (1987), pp. 613-621
[9] Fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math., Volume 326 (1998) no. 9, pp. 1085-1092
[10] Fully nonlinear stochastic partial differential equations: non-smooth equations and applications, C. R. Acad. Sci. Paris Sér. I Math., Volume 327 (1998) no. 8, pp. 735-741
[11] P.L. Lions, P.E. Souganidis, personal communications, various courses and lectures
[12] Uniqueness of viscosity solutions of fully nonlinear second order parabolic equations with discontinuous time-dependence, Differential and Integral Equations, Volume 3 (1990) no. 1, pp. 77-91
[13] Existence and uniqueness of viscosity solutions of parabolic equations with discontinuous time-dependence, Nonlinear Analysis. Theory, Methods and Applications, Volume 18 (1992) no. 11, pp. 1033-1062
- Higher order parabolic boundary Harnack inequality in
and domains, Discrete and Continuous Dynamical Systems, Volume 42 (2022) no. 6, pp. 2667-2698 | DOI:10.3934/dcds.2021207 | Zbl:1490.35061 - Hölder gradient estimates on
-viscosity solutions of fully nonlinear parabolic equations with VMO coefficients, SN Partial Differential Equations and Applications, Volume 2 (2021) no. 6, p. 22 (Id/No 81) | DOI:10.1007/s42985-021-00133-4 | Zbl:1491.35085 - Generalized crystalline evolutions as limits of flows with smooth anisotropies, Analysis PDE, Volume 12 (2019) no. 3, pp. 789-813 | DOI:10.2140/apde.2019.12.789 | Zbl:1403.53055
- Mean field game of controls and an application to trade crowding, Mathematics and Financial Economics, Volume 12 (2018) no. 3, pp. 335-363 | DOI:10.1007/s11579-017-0206-z | Zbl:1397.91084
- Global solution for a non-local eikonal equation modelling dislocation dynamics, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 168 (2018), pp. 154-175 | DOI:10.1016/j.na.2017.11.012 | Zbl:1383.35050
- Global existence results for eikonal equation with
initial data, NoDEA. Nonlinear Differential Equations and Applications, Volume 22 (2015) no. 4, pp. 947-978 | DOI:10.1007/s00030-015-0310-9 | Zbl:1327.35066 - Root's barrier, viscosity solutions of obstacle problems and reflected FBSDEs, Stochastic Processes and their Applications, Volume 125 (2015) no. 12, pp. 4601-4631 | DOI:10.1016/j.spa.2015.07.010 | Zbl:1335.60059
- Multidimensional Stochastic Burgers Equation, SIAM Journal on Mathematical Analysis, Volume 46 (2014) no. 1, p. 871 | DOI:10.1137/120866117
- Short time uniqueness results for solutions of nonlocal and non-monotone geometric equations, Mathematische Annalen, Volume 352 (2012) no. 2, pp. 409-451 | DOI:10.1007/s00208-011-0648-1 | Zbl:1246.35013
- Characterization of the value function of final state constrained control problems with BV trajectories, Communications on Pure and Applied Analysis, Volume 10 (2011) no. 6, p. 1567 | DOI:10.3934/cpaa.2011.10.1567
- Optimal control problems of BV trajectories with pointwise state constraints, IFAC Proceedings Volumes, Volume 44 (2011) no. 1, p. 2583 | DOI:10.3182/20110828-6-it-1002.01694
- A new Markov selection procedure for degenerate diffusions, Journal of Theoretical Probability, Volume 23 (2010) no. 3, pp. 729-747 | DOI:10.1007/s10959-009-0242-6 | Zbl:1214.60022
- Convergence of approximation schemes for nonlocal front propagation equations, Mathematics of Computation, Volume 79 (2010) no. 269, pp. 125-146 | DOI:10.1090/s0025-5718-09-02270-4 | Zbl:1208.65138
- Beale-Kato-Majda type condition for Burgers equation, Journal of Mathematical Analysis and Applications, Volume 354 (2009) no. 2, pp. 397-411 | DOI:10.1016/j.jmaa.2008.12.043 | Zbl:1173.35069
- Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 71 (2009) no. 7-8, pp. 2801-2810 | DOI:10.1016/j.na.2009.01.156 | Zbl:1166.49027
- Global Existence Results and Uniqueness for Dislocation Equations, SIAM Journal on Mathematical Analysis, Volume 40 (2008) no. 1, p. 44 | DOI:10.1137/070682083
Cité par 16 documents. Sources : Crossref, zbMATH
Commentaires - Politique