Les entropies d'ordre supérieur sont des estimateurs d'entropie cinétique pour les modèles fluides. Ces quantités sont quadratiques en les dérivées de la vitesse v et la température T avec des coefficients dépendants de T. Elles satisfont des inégalités entropiques si
Higher order entropies are kinetic entropy estimators for fluid models. These quantities are quadratics in the velocity v and temperature T derivatives and have temperature dependent coefficients. We establish entropic inequalities when
Accepté le :
Publié le :
Vincent Giovangigli 1
@article{CRMATH_2006__343_3_179_0, author = {Vincent Giovangigli}, title = {Entropies d'ordre sup\'erieur}, journal = {Comptes Rendus. Math\'ematique}, pages = {179--184}, publisher = {Elsevier}, volume = {343}, number = {3}, year = {2006}, doi = {10.1016/j.crma.2006.06.018}, language = {fr}, }
Vincent Giovangigli. Entropies d'ordre supérieur. Comptes Rendus. Mathématique, Volume 343 (2006) no. 3, pp. 179-184. doi : 10.1016/j.crma.2006.06.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.06.018/
[1] The Boltzmann Equation and Its Applications, Applied Mathematical Sciences, vol. 67, Springer-Verlag, 1988
[2] Weighted norm inequalities for maximal functions and singular integrals, Studia Mathematica, Volume LI (1974), pp. 241-250
[3] Analyse Combinatoire, Tomes I et II, Presses Universitaires de France, Paris, 1970
[4] On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Inventiones Mathematicae, Volume 159 (2005), pp. 245-316
[5] Mathematical Theory of Transport Processes in Gases, North-Holland, 1972
[6] Multicomponent Flow Modeling, Birkhäuser, Boston, 1999
[7] V. Giovangigli, Higher order entropies, Rapport Interne CMAP 592, 2005, soumis pour publication
[8] From kinetic to macroscopic models (B. Perthame; L. Desvillettes, eds.), Kinetic Equations and Asymptotic Theory, Series in Applied Mathematics, Gauthier-Villars/Elsevier, 2000
[9] S. Kawashima, Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, Doctoral Thesis, Kyoto University, 1984
[10] Mathematical Topics in Fluid Mechanics, vols. 1 and 2, Oxford Lecture Series in Mathematics and its Applications, Oxford Univ. Press, Oxford, 1996 (and 1998)
[11] Ondelettes et Opérateurs, volume 3 : Opérateurs Multilinéaires, Hermann, Paris, 1991
- Higher order entropies for compressible fluid models, M
AS. Mathematical Models Methods in Applied Sciences, Volume 19 (2009) no. 1, pp. 67-125 | DOI:10.1142/s021820250900336x | Zbl:1160.35493 - Higher order entropies, Archive for Rational Mechanics and Analysis, Volume 187 (2008) no. 2, pp. 221-285 | DOI:10.1007/s00205-007-0065-5 | Zbl:1136.82038
Cité par 2 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier