[Construction of hypercyclic operators failing the Hypercyclicity Criterion]
We prove the existence of hypercyclic operators on and which do not satisfy the Hypercyclicity Criterion. Our construction is inspired by the recent solution to ‘Herrero's Problem’ proposed by M. De La Rosa and C. Read.
On prouve l'existence d'opérateurs hypercycliques qui ne vérifient pas le critère d'hypercyclicité sur les espaces et . La construction est inspirée de la solution récente au « problème de Herrero » proposée par M. De La Rosa et C. Read.
Accepted:
Published online:
Frédéric Bayart 1; Étienne Matheron 1
@article{CRMATH_2007__344_4_231_0, author = {Fr\'ed\'eric Bayart and \'Etienne Matheron}, title = {Construction d'op\'erateurs hypercycliques ne v\'erifiant pas le crit\`ere d'hypercyclicit\'e}, journal = {Comptes Rendus. Math\'ematique}, pages = {231--234}, publisher = {Elsevier}, volume = {344}, number = {4}, year = {2007}, doi = {10.1016/j.crma.2006.12.010}, language = {fr}, }
TY - JOUR AU - Frédéric Bayart AU - Étienne Matheron TI - Construction d'opérateurs hypercycliques ne vérifiant pas le critère d'hypercyclicité JO - Comptes Rendus. Mathématique PY - 2007 SP - 231 EP - 234 VL - 344 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2006.12.010 LA - fr ID - CRMATH_2007__344_4_231_0 ER -
Frédéric Bayart; Étienne Matheron. Construction d'opérateurs hypercycliques ne vérifiant pas le critère d'hypercyclicité. Comptes Rendus. Mathématique, Volume 344 (2007) no. 4, pp. 231-234. doi : 10.1016/j.crma.2006.12.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.12.010/
[1] Existence of hypercyclic operators on topological vector spaces, J. Funct. Anal., Volume 148 (1997), pp. 384-390
[2] F. Bayart, E. Matheron, Hypercyclic operators which do not satisfy the hypercyclicity criterion, Prépublication, 2006
[3] Hereditarily hypercyclic operators, J. Funct. Anal., Volume 167 (1999), pp. 94-112
[4] M. De La Rosa, C. Read, A hypercyclic operator whose direct sum is not hypercyclic, Prépublication, 2006
[5] Limits of hypercyclic and supercyclic operators, J. Funct. Anal., Volume 99 (1991), pp. 179-190
[6] C. Kitai, Invariant closed sets of linear operators, PhD thesis, University of Toronto, 1982
Cited by Sources:
Comments - Policy