Using a topological arguments due to Aubin–Bahri (1997), we give some existence results for the Webster scalar curvature problem on the dimensional CR compact manifolds locally conformally CR equivalent to the unit sphere of .
Par des arguments topologiques introduits par Aubin–Bahri (1997), nous donnons quelques résultats d'existence pour le problème de la courbure scalaire de Webster sur les variétés CR de dimension localement conformément CR equivalent à la sphère unité de .
Accepted:
Published online:
Hichem Chtioui 1
@article{CRMATH_2007__345_1_11_0, author = {Hichem Chtioui}, title = {The {Webster} scalar curvature problem on higher dimensional {CR} compact manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {11--13}, publisher = {Elsevier}, volume = {345}, number = {1}, year = {2007}, doi = {10.1016/j.crma.2007.05.006}, language = {en}, }
Hichem Chtioui. The Webster scalar curvature problem on higher dimensional CR compact manifolds. Comptes Rendus. Mathématique, Volume 345 (2007) no. 1, pp. 11-13. doi : 10.1016/j.crma.2007.05.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.006/
[1] Homoclinics: Poincaré–Melnikov type results via a variational approach, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 15 (1998), pp. 233-252
[2] Méthode de topologie algebrique pour le probleme de la courbure scalaire prescrite, J. Math. Pures Appl., Volume 76 (1997), pp. 525-549
[3] Une hypothese topologique pour le probleme de la courbure scalaire prescrite, J. Math. Pures Appl., Volume 76 (1997), pp. 843-850
[4] Critical Point at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser., vol. 182, Longman Sci. Tech., Harlow, 1989
[5] An invariant for Yamabe-type flows with applications to scalar curvature problems in high dimensions. A celebration of J.F. Nash Jr., Duke Math. J., Volume 81 (1996), pp. 323-466
[6] The scalar curvature problem on the standard three dimensional spheres, J. Funct. Anal., Volume 95 (1991), pp. 106-172
[7] On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J., Volume 84 (1996), pp. 633-677
[8] H. Chtioui, M. Ould Ahmedou, R. Yacoub, in preparation
[9] The prescribed scalar curvature on a 3-dimensional CR manifold, Adv. Nonlinear Stud., Volume 2 (2002), pp. 193-235
[10] The CR Yamabe conjecture, the case , J. Eur. Math. Soc., Volume 3 (2001), pp. 105-137
[11] CR Yamabe conjecture, the conformally flat case, Pacific J. Math., Volume 201 (2001), pp. 121-175
[12] The Yamabe problem on CR manifolds, J. Differential Geom., Volume 25 (1987), pp. 167-197
[13] Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc., Volume 1 (1988), pp. 1-13
[14] Intrinsic CR normal coordinates and the CR Yamabe problem, J. Differential Geom., Volume 29 (1989), pp. 303-343
[15] A perturbation result for the Webster scalar curvature problem on the CR sphere, J. Math. Pures Appl., Volume 81 (2002), pp. 983-997
Cited by Sources:
Comments - Policy