In this Note, we deal with the simple elliptic singularities of type . By using the Lie algebra , we construct semi-universal deformation spaces of these singularities.
Dans cette Note, nous traitons les singularités elliptiques simples du type . En utilisant l'algèbre de Lie , nous construisons des espaces de déformation semi-universelle de ces singularités.
Accepted:
Published online:
Kazunori Nakamoto 1; Meral Tosun 2
@article{CRMATH_2007__345_1_31_0, author = {Kazunori Nakamoto and Meral Tosun}, title = {Semi-universal deformation spaces of some simple elliptic singularities}, journal = {Comptes Rendus. Math\'ematique}, pages = {31--34}, publisher = {Elsevier}, volume = {345}, number = {1}, year = {2007}, doi = {10.1016/j.crma.2007.05.018}, language = {en}, }
Kazunori Nakamoto; Meral Tosun. Semi-universal deformation spaces of some simple elliptic singularities. Comptes Rendus. Mathématique, Volume 345 (2007) no. 1, pp. 31-34. doi : 10.1016/j.crma.2007.05.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.018/
[1] Singular elements of semisimple algebraic groups, Actes Congrès Int. Math., Volume 2 (1970), pp. 279-284
[2] Loop groups, elliptic singularities and principal bundles over elliptic curves, CAUSTICS '02 (Banach Cent. Publ.), Volume vol. 62 (2004), pp. 87-99
[3] K. Nakamoto, M. Tosun, Geometry of simple elliptic singularities via Lie algebras, in preparation
[4] Quasihomogene isolierte Singularitaten von Hyperflachen, Invent. Math., Volume 14 (1971), pp. 123-142
[5] Einfach-elliptische Singularitaten, Invent. Math., Volume 23 (1974), pp. 289-325
[6] Extended affine root system. IV. Simply-laced elliptic Lie algebras, Publ. Res. Inst. Math. Sci., Volume 36 (2000) no. 3, pp. 385-421
[7] Simple Singularities and Simple Algebraic Groups, Lecture Notes Math., vol. 815, Springer, Berlin, 1980
[8] Locally semiuniversal flat deformations of isolated singularities of complex spaces, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 33 (1970) no. 5, pp. 967-999
Cited by Sources:
Comments - Policy