[Un processus zeta stochastique de Riemann]
Il est bien connu que pour tout
It is well-known that for every
Accepté le :
Publié le :
Werner Ehm 1
@article{CRMATH_2007__345_5_279_0, author = {Werner Ehm}, title = {A {Riemann} zeta stochastic process}, journal = {Comptes Rendus. Math\'ematique}, pages = {279--282}, publisher = {Elsevier}, volume = {345}, number = {5}, year = {2007}, doi = {10.1016/j.crma.2007.07.023}, language = {en}, }
Werner Ehm. A Riemann zeta stochastic process. Comptes Rendus. Mathématique, Volume 345 (2007) no. 5, pp. 279-282. doi : 10.1016/j.crma.2007.07.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.023/
[1] A stochastic interpretation of the Riemann zeta function, Proc. Natl. Acad. Sci. USA, Volume 90 (1993), pp. 697-699
[2] Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bull. Amer. Math. Soc., Volume 38 (2001), pp. 435-465
[3] Martingale convergence to infinitely divisible laws with finite variances, Trans. Amer. Math. Soc., Volume 162 (1971), pp. 449-453
[4] A family of probability densities related to the Riemann zeta function (M. Viana; D. Richards, eds.), Algebraic Methods in Statistics and Probability, Contemporary Mathematics, vol. 287, Amer. Math. Soc., Providence, RI, 2001, pp. 63-74
[5] On the Gaussian law of errors in the theory of additive functions, Proc. Natl. Acad. Sci. USA, Volume 25 (1939), pp. 206-207
[6] Limit Distributions for Sums of Independent Random Variables, Addison–Wesley, Cambridge, 1954
[7] Some remarks on the Riemann zeta distribution, Rev. Roumaine Math. Pures Appl., Volume 51 (2006), pp. 205-217
[8] The Riemann zeta distribution, Bernoulli, Volume 7 (2001), pp. 817-828
- A generalization of functional limit theorems on the Riemann zeta process, Osaka Journal of Mathematics, Volume 56 (2019) no. 4, pp. 843-882 | Zbl:1448.60082
Cité par 1 document. Sources : zbMATH
Commentaires - Politique