Comptes Rendus
Mathematical Analysis
The Schur–Szegö composition for real polynomials
Comptes Rendus. Mathématique, Volume 346 (2008) no. 5-6, pp. 271-276.

For two real polynomials in one variable P=j=0npjxj, Q=j=0nqjxj set W:=j=0n(pjqj/Cn+kj)xj where kN0. For k=0 this is the composition of Schur-Szegö of P and Q. We discuss the question if the numbers of negative, positive and complex roots of P and Q are known, what these numbers can be for W.

On définit d'après deux polynômes réels à une variable P=j=0npjxj, Q=j=0nqjxj le polynôme W:=j=0n(pjqj/Cn+kj)xjkN0. Pour k=0 on obtient la composition de Schur-Szegö de P et Q Nous discutons la question si le nombre de racines strictement négatives, strictement positives et complexes de P et Q sont connus, quels peuvent être ces nombres pour W.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.01.015
Vladimir Petrov Kostov 1

1 Laboratoire J.-A. Dieudonné, UMR 6621 du CNRS, Université de Nice, parc Valrose, 06108 Nice cedex 2, France
@article{CRMATH_2008__346_5-6_271_0,
     author = {Vladimir Petrov Kostov},
     title = {The {Schur{\textendash}Szeg\"o} composition for real polynomials},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {271--276},
     publisher = {Elsevier},
     volume = {346},
     number = {5-6},
     year = {2008},
     doi = {10.1016/j.crma.2008.01.015},
     language = {en},
}
TY  - JOUR
AU  - Vladimir Petrov Kostov
TI  - The Schur–Szegö composition for real polynomials
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 271
EP  - 276
VL  - 346
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crma.2008.01.015
LA  - en
ID  - CRMATH_2008__346_5-6_271_0
ER  - 
%0 Journal Article
%A Vladimir Petrov Kostov
%T The Schur–Szegö composition for real polynomials
%J Comptes Rendus. Mathématique
%D 2008
%P 271-276
%V 346
%N 5-6
%I Elsevier
%R 10.1016/j.crma.2008.01.015
%G en
%F CRMATH_2008__346_5-6_271_0
Vladimir Petrov Kostov. The Schur–Szegö composition for real polynomials. Comptes Rendus. Mathématique, Volume 346 (2008) no. 5-6, pp. 271-276. doi : 10.1016/j.crma.2008.01.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.01.015/

[1] T. Craven; G. Csordas Composition theorems, multiplier sequences and complex zero decreasing sequences, Value distribution theory and related topics, Adv. Complex Anal. Appl., vol. 3, Kluwer Acad. Publ., Boston, MA, 2004, pp. 131-166

[2] V.P. Kostov The Schur–Szegö composition for hyperbolic polynomials, C. R. Acad. Sci. Paris, Ser. I, Volume 345 (2007) no. 9, pp. 483-488 | DOI

[3] V.P. Kostov; B.Z. Shapiro On the Schur–Szegö composition of polynomials, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 81-86

Cited by Sources:

Research partially supported by research project 20682 for cooperation between CNRS and FAPESP “Zeros of algebraic polynomials”.

Comments - Policy


Articles of potential interest

The Schur–Szegö composition for hyperbolic polynomials

Vladimir Petrov Kostov

C. R. Math (2007)


A mapping connected with the Schur–Szegő composition

Vladimir Petrov Kostov

C. R. Math (2009)


On the Schur–Szegö composition of polynomials

Vladimir Kostov; Boris Shapiro

C. R. Math (2006)