For two real polynomials in one variable , set where . For this is the composition of Schur-Szegö of P and Q. We discuss the question if the numbers of negative, positive and complex roots of P and Q are known, what these numbers can be for W.
On définit d'après deux polynômes réels à une variable , le polynôme où . Pour on obtient la composition de Schur-Szegö de P et Q Nous discutons la question si le nombre de racines strictement négatives, strictement positives et complexes de P et Q sont connus, quels peuvent être ces nombres pour W.
Accepted:
Published online:
Vladimir Petrov Kostov 1
@article{CRMATH_2008__346_5-6_271_0, author = {Vladimir Petrov Kostov}, title = {The {Schur{\textendash}Szeg\"o} composition for real polynomials}, journal = {Comptes Rendus. Math\'ematique}, pages = {271--276}, publisher = {Elsevier}, volume = {346}, number = {5-6}, year = {2008}, doi = {10.1016/j.crma.2008.01.015}, language = {en}, }
Vladimir Petrov Kostov. The Schur–Szegö composition for real polynomials. Comptes Rendus. Mathématique, Volume 346 (2008) no. 5-6, pp. 271-276. doi : 10.1016/j.crma.2008.01.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.01.015/
[1] Composition theorems, multiplier sequences and complex zero decreasing sequences, Value distribution theory and related topics, Adv. Complex Anal. Appl., vol. 3, Kluwer Acad. Publ., Boston, MA, 2004, pp. 131-166
[2] The Schur–Szegö composition for hyperbolic polynomials, C. R. Acad. Sci. Paris, Ser. I, Volume 345 (2007) no. 9, pp. 483-488 | DOI
[3] On the Schur–Szegö composition of polynomials, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 81-86
Cited by Sources:
⁎ Research partially supported by research project 20682 for cooperation between CNRS and FAPESP “Zeros of algebraic polynomials”.
Comments - Policy