Comptes Rendus
Mathematical Analysis/Harmonic Analysis
An improvement of the Erdős–Turán theorem on the distribution of zeros of polynomials
Comptes Rendus. Mathématique, Volume 346 (2008) no. 5-6, pp. 267-270.

We prove a subtle ‘one-sided’ improvement of a classical result of P. Erdős and P. Turán on the distribution of zeros of polynomials. The proof of this improvement is quite short and rather elementary. Nevertheless it allows us to obtain a beautiful recent result of V. Totik and P. Varjú as a simple corollary, and in a somewhat stronger form, without any use of a potential theoretic machinery. Namely, if the modulus of a monic polynomial P of degree n (with complex coefficients) on the unit circle of the complex plane is at most 1+o(1) uniformly, then the multiplicity of each zero of P on the unit circle is o(n1/2). Our approach is based on the interesting observation that the Erdős–Turán Theorem improves itself.

Nous prouvons un raffinement délicat d'un résultat classique de P. Erdős et P. Turán sur la distribution des zéros de polynômes. Bien que notre preuve soit brève et plutôt élémentaire, elle nous permet d'obtenir comme corollaire et sans recourir à la théorie du potentiel, une amélioration d'un résultat récent et élégant de V. Totik et P. Varjú : si le module sur le cercle unité du plan complexe d'un polynôme P monique, de degré n et à coefficients complexes est uniformément au plus 1+o(1), alors la multiplicité de chaque zéro de P sur le cercle unité est o(n1/2). Notre approche repose sur l'observation, à notre avis intéressante, que le théorème de Erdős–Turán peut en quelque sorte s'auto-raffiner.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.01.020

Tamás Erdélyi 1

1 Department of Mathematics, Texas A&M University, College Station, Texas 77843, USA
@article{CRMATH_2008__346_5-6_267_0,
     author = {Tam\'as Erd\'elyi},
     title = {An improvement of the {Erd\H{o}s{\textendash}Tur\'an} theorem on the distribution of zeros of polynomials},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {267--270},
     publisher = {Elsevier},
     volume = {346},
     number = {5-6},
     year = {2008},
     doi = {10.1016/j.crma.2008.01.020},
     language = {en},
}
TY  - JOUR
AU  - Tamás Erdélyi
TI  - An improvement of the Erdős–Turán theorem on the distribution of zeros of polynomials
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 267
EP  - 270
VL  - 346
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crma.2008.01.020
LA  - en
ID  - CRMATH_2008__346_5-6_267_0
ER  - 
%0 Journal Article
%A Tamás Erdélyi
%T An improvement of the Erdős–Turán theorem on the distribution of zeros of polynomials
%J Comptes Rendus. Mathématique
%D 2008
%P 267-270
%V 346
%N 5-6
%I Elsevier
%R 10.1016/j.crma.2008.01.020
%G en
%F CRMATH_2008__346_5-6_267_0
Tamás Erdélyi. An improvement of the Erdős–Turán theorem on the distribution of zeros of polynomials. Comptes Rendus. Mathématique, Volume 346 (2008) no. 5-6, pp. 267-270. doi : 10.1016/j.crma.2008.01.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.01.020/

[1] V.V. Andrievskii; H.-P. Blattm Discrepancy of Signed Measures and Polynomial Approximation, Springer, New York, 2002

[2] P. Borwein; T. Erdélyi; G. Kós Littlewood-type problems on [0,1], Proc. London Math. Soc. (3), Volume 79 (1999), pp. 22-46

[3] P. Erdős; P. Turán On the distribution of roots of polynomials, Ann. Math. (1950), pp. 105-119

[4] G. Halász On the first and second main theorem in Turán's theory of power sums (P. Erdős, ed.), Studies in Pure Mathematics, Birkhäuser Verlag, Basel, 1983, pp. 259-269 (To the Memory of Paul Turán)

[5] M. Lachance; E.B. Saff; R. Varga Inequalities for polynomials with a prescribed zero, Math. Z., Volume 168 (1979), pp. 105-116

[6] V. Totik Review on the book “Discrepancy of Signed Measures and Polynomial Approximation”, Bull. London Math. Soc., Volume 35 (2003), pp. 284-287

[7] V. Totik, P. Varjú, Polynomials with prescribed zeros and small norm, Acta Sci. Math. (Szeged), in press

Cited by Sources:

Comments - Policy