It is shown that the Fourier transform is essentially, up to a simple adjustment, the only transform on the corresponding space which maps convolutions to products and products to convolutions (surprisingly, no linearity is assumed a priori).
On montre que la transformation de Fourier est essentiellement, à une simple adaptation près, la seule application, qui sur les espaces où elle opère, transforme les convolutions en produits et les produits en convolutions. (De manière surprenante la linéarité n'est pas supposée à priori.)
Accepted:
Published online:
Semyon Alesker 1; Shiri Artstein-Avidan 1; Vitali Milman 1
@article{CRMATH_2008__346_11-12_625_0, author = {Semyon Alesker and Shiri Artstein-Avidan and Vitali Milman}, title = {A characterization of the {Fourier} transform and related topics}, journal = {Comptes Rendus. Math\'ematique}, pages = {625--628}, publisher = {Elsevier}, volume = {346}, number = {11-12}, year = {2008}, doi = {10.1016/j.crma.2008.04.001}, language = {en}, }
TY - JOUR AU - Semyon Alesker AU - Shiri Artstein-Avidan AU - Vitali Milman TI - A characterization of the Fourier transform and related topics JO - Comptes Rendus. Mathématique PY - 2008 SP - 625 EP - 628 VL - 346 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2008.04.001 LA - en ID - CRMATH_2008__346_11-12_625_0 ER -
Semyon Alesker; Shiri Artstein-Avidan; Vitali Milman. A characterization of the Fourier transform and related topics. Comptes Rendus. Mathématique, Volume 346 (2008) no. 11-12, pp. 625-628. doi : 10.1016/j.crma.2008.04.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.04.001/
[1] S. Artstein-Avidan, V. Milman, The Concept of Duality in Convex Analysis, and the Characterization of the Legendre Transform. Annals of Mathematics, in press
[2] S. Artstein-Avidan, V. Milman, A characterization of the concept of duality, in: Electronic Research Announcements in Mathematical Sciences, AIMS, vol. 14, 2007, pp. 48–65
[3] Generalized Functions. Vol. I: Properties and Operations, Academic Press, New York–London, 1964 (Translated by Eugene Saletan)
[4] Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993 (With the assistance of Timothy S. Murphy Monographs in Harmonic Analysis, III) (ISBN: 0-691-03216-5)
[5] Complex Analysis, Princeton Lectures in Analysis, vol. II, Princeton University Press, Princeton, NJ, 2003 (ISBN: 0-691-11385-8)
Cited by Sources:
⁎ The research was supported in part by Israel Science Foundation: first named author by grant No. 1369/04, second named author by grant No. 865/07, third named author by grant No. 491/04. The second and third names authors were supported in part by BSF grant No. 2006079.
Comments - Policy