Comptes Rendus
Number Theory/Geometry
Congruence obstructions to pseudomodularity of Fricke groups
Comptes Rendus. Mathématique, Volume 346 (2008) no. 11-12, pp. 603-606.

A pseudomodular group is a finite coarea non-arithmetic Fuchsian group whose set of cusps is P1(Q). Long and Reid constructed finitely many of these by considering Fuchsian groups uniformizing one-cusped tori, i.e., Fricke groups. We show that a zonal (i.e., having a cusp at infinity) Fricke group with rational cusps is pseudomodular if and only if its set of finite cusps is dense in the finite adeles of Q, and that there are infinitely many Fricke groups with rational cusps that are neither pseudomodular nor arithmetic.

Un groupe pseudo-modulaire est un groupe fuchsien, non-arithmétique et de coaire finie dont l'ensemble des pointes est P1(Q). Long et Reid en ont construit un nombre fini en considérant les groupes fuchsiens qui uniformisent les tores à un trou, appelés groupes de Fricke. Nous démontrons ici qu'un groupe de Fricke, dont les pointes sont les nombres rationnels et l'infini, est pseudo-modulaire si et seulement si l'ensemble de ses pointes finies est dense dans le groupe des adèles finies de Q. Nous en déduisons, l'existence d'une infinité de groupes de Fricke à pointes rationnelles, qui ne sont ni pseudo-modulaires ni arithmétiques.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.04.005

David Fithian 1

1 Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395, USA
@article{CRMATH_2008__346_11-12_603_0,
     author = {David Fithian},
     title = {Congruence obstructions to pseudomodularity of {Fricke} groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {603--606},
     publisher = {Elsevier},
     volume = {346},
     number = {11-12},
     year = {2008},
     doi = {10.1016/j.crma.2008.04.005},
     language = {en},
}
TY  - JOUR
AU  - David Fithian
TI  - Congruence obstructions to pseudomodularity of Fricke groups
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 603
EP  - 606
VL  - 346
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2008.04.005
LA  - en
ID  - CRMATH_2008__346_11-12_603_0
ER  - 
%0 Journal Article
%A David Fithian
%T Congruence obstructions to pseudomodularity of Fricke groups
%J Comptes Rendus. Mathématique
%D 2008
%P 603-606
%V 346
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2008.04.005
%G en
%F CRMATH_2008__346_11-12_603_0
David Fithian. Congruence obstructions to pseudomodularity of Fricke groups. Comptes Rendus. Mathématique, Volume 346 (2008) no. 11-12, pp. 603-606. doi : 10.1016/j.crma.2008.04.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.04.005/

[1] R. Abe On correspondences between once punctured tori and closed tori: Fricke groups and real lattices, Tokyo J. Math., Volume 23 (2000) no. 2, pp. 269-293

[2] A.F. Beardon The Geometry of Discrete Groups, Graduate Texts in Math., vol. 91, Springer-Verlag, 1983

[3] C. Culler; P. Shalen Varieties of group representations and splittings of 3-manifolds, Ann. of Math., Volume 117 (1983) no. 1, pp. 109-146

[4] D.D. Long; A.W. Reid Generalized Dedekind sums, Proceedings of the Casson Fest, Geometry and Topology Monographs, vol. 7, 2004, pp. 205-212

[5] D.D. Long; A.W. Reid Pseudomodular surfaces, J. Reine Angew. Math., Volume 552 (2002), pp. 77-100

[6] G. Shimura Introduction to the Arithmetic Theory of Automorphic Functions, Princeton University Press, 1971

Cited by Sources:

Comments - Policy