[Mouvement brownien par rapport à une famille de métriques : définition, existence et applications]
Given an n-dimensional compact manifold M, endowed with a family of Riemannian metrics
Soit M une variété compacte de dimension n et
Accepté le :
Publié le :
Marc Arnaudon 1 ; Kolehe Abdoulaye Coulibaly 1 ; Anton Thalmaier 2
@article{CRMATH_2008__346_13-14_773_0, author = {Marc Arnaudon and Kolehe Abdoulaye Coulibaly and Anton Thalmaier}, title = {Brownian motion with respect to a metric depending on time; definition, existence and applications to {Ricci} flow}, journal = {Comptes Rendus. Math\'ematique}, pages = {773--778}, publisher = {Elsevier}, volume = {346}, number = {13-14}, year = {2008}, doi = {10.1016/j.crma.2008.05.004}, language = {en}, }
TY - JOUR AU - Marc Arnaudon AU - Kolehe Abdoulaye Coulibaly AU - Anton Thalmaier TI - Brownian motion with respect to a metric depending on time; definition, existence and applications to Ricci flow JO - Comptes Rendus. Mathématique PY - 2008 SP - 773 EP - 778 VL - 346 IS - 13-14 PB - Elsevier DO - 10.1016/j.crma.2008.05.004 LA - en ID - CRMATH_2008__346_13-14_773_0 ER -
%0 Journal Article %A Marc Arnaudon %A Kolehe Abdoulaye Coulibaly %A Anton Thalmaier %T Brownian motion with respect to a metric depending on time; definition, existence and applications to Ricci flow %J Comptes Rendus. Mathématique %D 2008 %P 773-778 %V 346 %N 13-14 %I Elsevier %R 10.1016/j.crma.2008.05.004 %G en %F CRMATH_2008__346_13-14_773_0
Marc Arnaudon; Kolehe Abdoulaye Coulibaly; Anton Thalmaier. Brownian motion with respect to a metric depending on time; definition, existence and applications to Ricci flow. Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 773-778. doi : 10.1016/j.crma.2008.05.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.05.004/
[1] Gradient estimates for positive harmonic functions by stochastic analysis, Stochastic Process. Appl., Volume 117 (2007) no. 2, pp. 202-220
[2] The Ricci Flow: An Introduction, Mathematical Surveys and Monographs, vol. 110, American Mathematical Society, Providence, RI, 2004
[3] Formulae for the derivatives of heat semigroups, J. Funct. Anal., Volume 125 (1994) no. 1, pp. 252-286
[4] Conditional expectations for derivatives of certain stochastic flows, Séminaire de Probabilités, XXVII, Lecture Notes in Math., vol. 1557, Springer, Berlin, 1993, pp. 159-172
[5] Stochastic Calculus in Manifolds, Springer-Verlag, Berlin, 1989 (With an appendix by P.-A. Meyer)
[6] Stochastic Analysis on Manifolds, Graduate Studies in Mathematics, vol. 38, American Mathematical Society, Providence, RI, 2002
[7] Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., Volume 20 (1984) no. 1, pp. 237-266
[8] Stochastic Analysis, Grundlehren der Mathematischen Wissenschaften, vol. 313, Springer, Berlin, 1997
[9] Gradient estimates for harmonic functions on regular domains in Riemannian manifolds, J. Funct. Anal., Volume 155 (1998) no. 1, pp. 109-124
Cité par Sources :
Commentaires - Politique